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previous theoretical and experimental efforts. Optical cavitation has
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fluid undergoing a steady shear flow history. The flow-induced
deformation of these single bubbles was recorded and analyzed. ( - 'o "-

The amplitude of bubble deform tin was found to increase linearly
with flow strength over a ranq geof shear from 0 to 250 sec-. Fluid
viscosity, between 0.01 d 0.16 poise, was found to have only a
minimal effect on theiiignitude of such deformations. However, fluid
elasticity result' from the addition of polymer solutes in the
concentration, range of 0 to 2000 wppm was demonstrated to decrease the
amplitud4- 6 nonsphericity. Competition between viscous and elastic
effeclts was seen at the highest polymer concentration (C = 2000 wppm).

,5 Recent modelling efforts involving an oscillatory flow were modified
and applied to these steady flow experiments. Agreement between
theory and experiment for low-viscosity Newtonian fluids was found to

- be within the experimental uncertainty of ± 10%. However, agreement
worsened (to within - 151) as fluid viscosity increased. For
viscoelastic fluids, the model qualitatively predicted the deformation
suppression which was observed experimentally.

These results have been indirectly related to macroscopic
observations through previous research involving pressure-field
modelling of nonspherical bubble collapse. That work showed collapse
pressure amplitude near a solid wall to increase with increased bubble
nonsphericity. This research has established the role of dilute polymer
solutions in the suppression of flow-induced bubble nonsphericity.
Thus, for hydraulic systems which combine wall proximity and strong
flow, the addition of minute quantities of polymer solutes could
reasonably be expected to diminish cavitation intensity.
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NOMENCLATURE

symbol definition

a spheroid semiaxis (actual)

a = an(t) amplitude of the (n,m) spherical harmonicnm nm
a. amplitude of the (i,O) spherical harmonic

a. initial model amplitude

so initial model amplitude velocity

A bubble deformation amplitude

Ai  specific bubble deformation amplitude

A A(t/r) average bubble deformation amplitude

A bubble deformation amplitude in solvents

Am  model bubble deformation amplitude

A*(t) complex model flow amplitude function

A* complex model flow amplitude constant

b spheroid semiaxis (actual)

c speed of sound in liquid

C (1) speed of sound in liquid
(2) (polymer) concentration

C. Fourier series coefficients

C specific heat at constant pressure

Cv specific heat at constant volume

d focal spot depth

D (laser pulse) diameter

De Deborah number

e strain tensor

ix
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symbol definition

rate of strain tensor L

E model prediction error

Eb bubble nucleation energy

Ec laser calibration energy

Enet transmitted (measured) laser energy

exp(x) = ex exponential of x

f ,f' lens focal lengths (in different media)

g annular gap width

Go elastic modulus

h (gap) height

H (1) liquid enthalpy
(2) (flow system) height

i integer

identity tensor

lm(z) imaginary part of the complex number z

j integer

k Boltzmann's constant

L reflective energy loss percentage

m integer

max maximum value

M (polymer) molecular weight

n (1) integer
(2) (polymer) number density

n , n refractive indices (of different media)

N Avagadro's numberav .'-

p pressure

x
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symbol definition

p. ambient pressure

pg gas pressure

Pv vapor pressure

p(R) pressure at the bubble surface

P power

r (1) spherical coordinate radius
(2) equivalent spherical bubble radius (measured)

r(O,*,t) bubble shape function

r (flow system) focal radius

R = R(t) equivalent spherical bubble radius (actual)

R bubble radius for p(R)=pg .
9

R, maximum spherical bubble radius

KO composite maximum bubble radius

Rfit(t) Fourier series bubble radius function

Ri  inner cylinder radius

R° 0outer cylinder radius

Rm model bubble radius

Re(A*) real model flow amplitude constant

ReN(A*) normalized real model flow amplitude constant

Re(z) real part of the complex number z

s focal spot radius

S (flow system) side length

S(r,8,O,t) bubble surface function

t (1) time
(2) (superscript) transpose tensor

t' past time

xi
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symbol definition

tj specific time

t bubble collapse time

tdeay model flow amplitude decay constant

T temperature

V velocity vector

vw wall velocity

v free stream velocity

V volume

V laser capacitor bank charge voltagecap

Yn(em ) spherical harmonic of order n and degree ms r smx (a.

spheroid semiaxis (measured)
g ~~spheroid semiaxis (measured) i~i1'

polytropic gas constant (C p/C v )

r shear rate

r gamma function

A(x) change in x

strain rate

model flow amplitude decay constant

fluid viscosity

ns  solvent viscosity

e (1) spherical coordinate cone angle
(2) laser pulse divergence L.

Kcylinder size ratio (Ri/R o )

X, fluid relaxation time

l1a fluid viscosity

xii



symbol definition

v kinematic viscosity

w pi ( 3.1416)

p fluid density

a fluid surface tension

o. incipient cavitation number

a total stress tensor

Z summation

(1) characteristic flow time
(2) experimental bubble collapse period

T. specific experimental bubble collapse period

Trr normal stress component

shear stress component

T extra stress tensor

spherical coordinate polar angle

w rotation rate

wt  transition rotation rate

Q model flow oscillation frequency

d/dx total first derivative w.r.t. x

d 2 /dx 2 -  total second derivative w.r.t. x

a/ax flal first derivative w.r.t. x

a2/ax2 par% 1 second derivative w.r.t. x

V grao it vector

total first derivative w.r.t. time

total second derivative w.r.t. time

I integral

xiii
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FIGURE 2-2. Vapor cavity in water with a
typical welt developed jet (Lauterborn, 1979). 7

with bubble collapse. It has been further postulated that the high-

speed impingement of this microjet on a solid surface is a fundamental

mechanism of cavitation damage (Kornfeld &Suvorov, 1944; Naude F

Ellis, 1961; Shutter F.Mesler, 1965).

Near a plane solid boundary jet formation occurs via a three-part

mechanism. First, the flow field induced by the proximity of the wall

causes a motion of the bubble center toward the boundary upon

. .", . .
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spherical shape can become unstable during the final stages of collapse %

(Plesset , Mitchell, 1956). Neglected here were the effects of vapor

and liquid viscosities and vapor density. However, the resulting trends

have been shown to remain valid even with the inclusion of a small

viscous effect (Prosperetti & Seminara, 1978).

A paramount problem associated with nonspherical bubble dynamics is

the determination of cavity shape. It has become common to specify the

bubble shape by use of an expansion in terms of spherical harmonics P.

mm

S(r,OO,t) = r - R(t) - Z anm(t) Ym(e,€) (2-10)

n,m

where R(t) is the instantaneous average radius, a m Ct)is the amplitude

of the spherical harmonic component of order n and degree m and,

S(r,e,o,t) = 0 (2-11)

is the equation describing the bubble surface (Plesset & Prosperetti,

1977).

The presence of a solid boundary or free surface near a vapor

cavity can greatly alter the flow field created by the bubble dynamics

and lead to large deviations from sphericity during collapse. The

formation of a cumulative jet (Figure 2-2), directed toward a solid

boundary and away from a free surface, has been inherently associated
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wall motion with first-order corrections becomes,

RR (1 - ) (3/2)R2  
- ( 4 /3 )-- = (2-9)

I 3 12a R Rpg 3' 1 Pv p P- woo" 4u nw 1 - -4u -i~....

R R R c

where c is the speed of sound in the liquid and is assumed constant.

However, it is noted that the duration of cavity collapse is so short,

approximately one microsecond, that the effects of liquid compressibility L

and bubble contents behavior can be drastically diminished (Plesset &

Prosperetti, 1977).

These analyses have all assumed the maintenance of spherical

symmetry throughout the bubble growth and collapse. However,

nonspherical bubble shapes have been found to result from a number of

circumstances. For example, far field conditions, such as an imposed

flow or the proximity of a solid boundary or free surface, may be

applied to the liquid, or a cavity may simply be initiated

nonspherically.

A preliminary linear stability study has been conducted for a nearly

spherical drop formed by the interface between two immiscible, L

incompressible, inviscid fluids (Plesset, 1954). It was determined that

both droplet growth and surface tension promote shape stability while

droplet collapse has a destabilizing effect. A more involved analysis for

a vapor cavity in an unbounded quiescent fluid revealed that the

* -. . . * " "" o ...-. " * - • . •. . .. , l .',. .. . . ."... . , ,-.__- ... ,_,L...,j,: ,.-, _, *. .. . . :...-',, .. . :,- ."-.-,. ,:: . -.* ., ,.-. . -.....- . - -.. .-.
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FIGURE 2-1. Comparison of experiment and
RNNP theory for a spherical laser-induced
model cavitation bubble in silicone oil
(Lauterborn, 1974).

account for liquid compressibility resulting in,

R 3 R R,'+'-R

RR 1 - h-R2 1 - = H 1 HfH 1 - (2-8)
C 2 3C CC C-:

where H and C are the liquid enthalpy and the speed of sound at the

bubble wall. Gilmore could only obtain solutions of this model based on

an approximation (Kirkwood , Bethe, 1942). A full solution was later

obtained numerically (Hickling F, Plesset, 1964) and compared to the

incompressible and approximately compressible models.

More recently, the generalized Rayleigh-Plesset equation has been

extended to include both first and second-order corrections for liquid

compressibility (Fujikawa & Akamatsu, 1980). The equation of bubble

...................
.... '.' .........................'..J*'?
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questions. The quiescent fluid result is the nonlinear differential

equation,

$ 3 *q (.!q)3T 2a R
RR -R 2  = Pv - P- - - (2-6)

2 R R R

with the internal gas pressure, pg, for a bubble of radius, Rg, given

by,

2a "

Pg = P- -Pv (2-7)
R

wherePv is the vapor pressure and T is the ratio of specific heats

(C /C ) of the permanent gas. A numerical solution of this model hasp v
been obtained for representative experimental parameters (Lauterborn,

1974). The results were found to be in good agreement with

experimental data on the decaying nonlinear oscillations of spherical

laser-induced cavities in silicone oil (Figure 2-1). In addition, it is

quite likely that the internal vapor also acts as a noncondensible gas

because mass transfer (condensation) cannot keep up with bubble wall

motion as the radial velocity approaches the speed of sound in the

vapor (Plesset & Prosperetti, 1977; Hammitt, 1980).

Furthermore, the liquid compressibility effects can become significant

if the bubble wall velocity approaches the speed of sound in the liquid.

The Rayleigh equation has been successfully modified (Gilmore, 1952) to

.. . . .. . ......... . . °- . 1
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where pi is now the bubble interior pressure and a is the surface

tension constant. It was ultimately resoll~ed that normal stresses across

the bubble surface must be balanced, rather than pressures (Poritsky,

1952). It is only through this boundary condition,

2a R
p(R) = p.--- (2-4)

R R

where denotes differentiation with respect to time, that the liquid

viscosity, i., appears. The resulting Rayleigh-Plesset equation,

3 2 R
RR =+-R- i--- 4u (2-5)

2 R R

is the fundamental equation governing the dynamics of a spherical

cavity in an unbounded incompressible viscous liquid (Prosperetti,

1982).

A further extension of this generalized equation is the RNNP bubble

model which includes the additional effects of gas content on bubble

collapse dynamics (Rayleigh, 1917; Noltingk F, Neppiras, 1950; Poritsky,

1952). Neglected in this analysis are bubble translation, heat

conduction, sound radiation, gas diffusion and shape stability

........................................ . ' . "
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consist primarily of a noncondensible gas and are therefore not

associated with the cavitation phenomenon. The latter describes

cavities composed almost entirely of the vapor of the surrounding
.. - '-

liquid.

The field of vapor-bubble dynamics has been further subdivided into

two categories depending on whether the surrounding liquid is in a

superheated or subcooled state. This delineation results from a

difference in the relative importance of thermal and inertial effects

(Plesset , Prosperetti, 1977). In the case where thermal effects are

important the term boiling bubble is used and the dynamics are

controlled by the latent heat flow. For this analysis the coupling of an

energy equation is essential. In the simpler case, referred to as a

cavitation bubble, the motion is controlled primarily by liquid inertia

and thermal effects can be neglected. Thus, the surprisingly accurate

results of Rayleigh's highly idealized approach can be explained and

understood.

It is clear that although the bubble growth (or collapse) process is r

initiated by pressure forces, inertia, surface tension and viscosity

subsequently play important roles. The effects of surface tension can

be easily included by making a simple, though not strictly correct,

pressure balance across the bubble wall,

2a
p(R) = pi- - (2-3)

R

* ,...-. . . . ..... " - * .
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cavity is,

m =

Rd (3/2) p(R) - p. (2-1)
dt" dt '.,

where the liquid pressure at the bubble surface, p(R), the liquid -7

pressure far from the bubble, p., and the liquid density, p, are all

assumed constant. For this empty bubble problem, p(R) is also

equivalent to the pressure within the bubble. An important result of

Rayleigh's model is an exact solution for the time, tc, required for the

complete collapse of a cavity,

r (5/6) 3wp
= -'-t R0 (2-2A) "-i-

r(1/3) 2[p- p(R)] (2"-A

= 0.91468 RO (2-2B)
p.- p(R).

from an initial radius R0 .

These early analyses neglected thermal effects in the formulation of

governing equations. With subsequent expansion in bubble dynamics

research it has become necessary to distinguish among several

subgroups of bubbles within the field. A natural distinction can be

made between the two subjects of gas and vapor bubbles (Plesset F,

Prosperetti, 1977). The former refers to bubbles whose interiors
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PREVIOUS RESEARCH

1. Newtonian Analyses

The earliest analysis of bubble growth was that of Besant which was

published in 1859. This highly idealized model predated the recognition

of bubble dynamics as an important scientific question and was merely a

mathematical exercise exploring an interesting problem. Hence, it was

not until much later (Reynolds, 1894) that observations of cavitation

bubble growth were first reported. Reynolds noted the formation of

vapor cavities in water flowing through a constricted tube.

This nucleation of cavitation bubbles is found to occur in regions

within a flowing fluid where the local pressure has fallen, in accordance

with Bernoulli's equation, below the vapor pressure of the liquid.

These vapor cavities are carried along by the fluid until they enter a

region of increased pressure where they rapidly collapse. It was

concluded by a British Admiralty commission in 1915 that the collapse of

such bubbles near propellor blades was the prime mechanism of damage

to the blades (Blake £.Gibson, 1981).

Lord Rayleigh, associated with the British Admiralty at that time,

proceeded to solve by an alternate method and apply to cavitation

Besant s problem of the collapse of an empty bubble in an infinite mass

of homogeneous liquid (Rayleigh, 1917). Assuming spherical symmetry

and neglecting the effects of viscosity and surface tension, the

resulting differential equation for the radius R(t) of the collapsing

- .* .. .'. * .... .~ %,.* . .%
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research results of a similar nature (Hara, 1983) in an attempt to

corroberate those recent model predictions. In addition, these unified

conclusions from the fundamental viewpoint of non-Newtonian bubble

dynamics are related, as best they can, to the applied observations of

hydraulic cavitation suppression in dilute polymer solutions.

In the following sections the areas of interest specific to this

research are presented individually. The pertinent background, both

theoretical and experimental, is reviewed in order to lay a foundation

for later sections and to place the present work in proper historical

perspective. A detailed discussion of the experimental techniques and

equipment is given, as is an overview of the relevant bubble modelling p

approaches, especially that of Hara. Results are subsequently -.

presented and interpreted not only with respect to the fundamentals,

but also with re9ard to the hydraulic cavitation phenomena which still

elude complete explanation and serve to motivate further research.

Finally, conclusions from the research results are drawn and

recommendations for future work are made.

- . . .... . . . .
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FIGURE 1-1. The effect of dilute polymer
solutes on hydraulic cavitation inception
(Ellis &Ting, 1974).

(a) (b)

FIGURE 1-2. Comparison of cavitation
appearance in (a) water and (b) dilute aqueous
Polyox solution (Ting, 1978).
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cavitation is significantly altered (Figure 1-2) by the presence of these

drag reducing polymers (Brennen, 1970; Oba, Ito & Uranishi, 1978;

Ting, 1978). This would seem to indicate that the alteration of flow

cavitation by polymer additives is not merely a nucleation effect and

that the investigation of bubble dynamics in macromolecular fluids

should promote further insight concerning this phenomena.

Specifically, it has been postulated that the counterintuitive non-

Newtonian behavior exhibited by even dilute polymer solutions are at

least in part responsible for cavitation suppression. It is well known

that the viscoelastic behavior of such macromolecular fluids can

substantially alter both stress and velocity fields of a flowing system

(Schowalter, 1978). Since the dynamics of spherical and especially

non-spherical cavitation bubbles are intimately coupled to the fluid

stresses and velocities at the bubble surface, it is anticipated that the

effects of polymer additives on fluid rheology do in fact result in an

alteration of the individual bubble dynamics and lead to macroscopic

changes of the types reported. In particular, the case of a vapor

bubble growing and collapsing while nonspherically deforming in an

externally imposed flow field is expected to support the contention that

cavitation modification by polymer additives is attributable to non-

Newtonian bubble dynamics as well as viscoelastic nucleation.

In this light, the present study has sought to build upon previous

theoretical research by experimentally investigating the growth, collapse

and deformation of single model cavitation bubbles produced

nonintrusively within a liquid bulk that is undergoing a well defined

flow history. The experimental data are compared with theoretical

.- -...-.-...-.-....-.. ,. -:.-.....-.-...-.. .-...-.. ,..-..................,....-.-....-.....-..-.-.--........ ;
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Recent investigations of cavitation bubble dynamics have been aided

by improved methods of production, the most successful being the

formation of single vapor bubbles by focussing short light pulses from a

laser into a liquid (Lauterborn & Bolle, 1976). The precision and

flexibility of this technique permits the incorporation of high-speed

photography, an extremely powerful experimental tool, for data

acquisition (Lauterborn, 1972). In this light, the experimental and

theoretical investigations of the dynamics of model cavitation bubbles

would appear to be of greatest help toward a fundamental understanding

of the effects of hydraulic cavitation.

An intriguing aspect of this problem arises with modification of the

test fluid by the addition of small amounts of macromolecules. It is well

documented that the addition of water-soluble polymer to a cavitating

system can both inhibit the onset and suppress the development of

cavitation (Ellis, Waugh & Ting, 1970; Ting, 1974; Hoyt, 1976). The

incipient cavitation number, oi , has been used as a measure of the state

of a liquid at the onset of cavitation. It is given by,

P.- Pv
oi  -- (1-1)

p(vft)"

where p. is the free stream static pressure, pv the liquid vapor

pressure, p is the liquid density and v is the free stream velocity.

Reduction of ai by as much as seventy percent from its value for pure

water has been reported for dilute (C : 1000 wppm) aqueous polymer

solutions (Figure 1-1). In addition, the physical appearance of



INTRODUCTION

The group of phenomena known collectively as cavitation and associated

with the formation of cavities in liquids (either void, gas or vapor

filled) has long occupied a position at the forefront of engineering

research. The field of hydraulic cavitation, having arisen from practical

needs, deals with all types of hydraulic systems including submerged

propellors and bluff bodies, turbine blades, pumps and hydrofoils.

The occurrence of cavitation in such systems can result in a dramatic

decrease in efficiency, radiation of intense noise and even the

destructive erosion of exposed parts. These observations have

stimulated considerable interest in hydraulic cavitation with the ultimate

goals of gaining an improved funda, ental understanding of the

phenomena as well as beneficially applying laboratory findings to

situations of practical interest.

Experimental studies directed toward applied ends have suffered from

a lack of reproducibility since the appearance of cavitation bubbles in

practical systems is of a predominantly stochastic nature in both time

and space. Different test facilities have reported large quantitative

differences in cavitation parameters for similar tests as well as

pronounced qualitative variations in the physical form of cavitation on

identical test bodies (Johnsson, 1969). However, there is sufficient

evidence available to confirm the generally accepted view that the

macroscopic effects of cavitation can be attributed to the dynamics of

individual bubbles (Knapp, 1955; Hammitt, 1963).

....................................................... ' -
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collapse. This leads to an initial substantial collapse of the bubble

sides normal to the wall (i.e. an elongation perpendicular to the

boundary). Then, this is followed by an accelerated collapse of the

bubble surface farthest from the wall and the development of the

observed microjet (Benjamin & Ellis, 1966; Plesset & Prosperetti, 1977;

Hammitt, 1980). Complete theoretical analyses of the collapse of an

empty cavity near as well as attached to a plane solid surface have

been obtained numerically (Plesset & Chapman, 1971).

The validity of these calculations has been supported (Lauterborn ,

Bolle, 1975) by experimental data from laser-generated cavitation

bubbles (Figure 2-3). In addition, these experiments confirmed

quantitative predictions of maximum jet velocities between 13,000 and

18,000 cm/sec for reasonable physical parameters. An extremely

important parameter governing vapor cavity collapse in the vicinity of a

rigid boundary was found to be the ratio of the distance from the initial

bubble center to the wall and the maximum bubble radius (Chahine F,

Fruman, 1979).

Other factors, such as nonspherical initial shape, have been shown

to greatly affect the collapse dynamics for pure vapor bubbles in an

unbounded quiescent liquid (Chapman , Plesset, 1972). These

numerical analyses have revealed that upon collapse an initially prolate

ellipsoid (a) leads to the formation of a pair of liquid jets while an

initially oblate ellipsoid (b) results in a dumbbell form (Figure 2-4).

Such highly nonspherical behavior can be predicted with or without the

inclusion of liquid viscosity. Inviscid analyses have been performed by

using integral methods (Voinov F, Voinov, 1976) or by assuming a

. . . . . . ..
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potential flow solution and employing Bernoulli's equation (Plesset ,-.

Chapman, 1971; Chapman &, Plesset, 1972). Alternatively, the effects .

of viscosity have been investigated by using the Marker-and-Cell ~"-

technique (Mitchell &, Hammitt, 1973)..:

More recently, theoretical and experimental studies on the growth

and collapse of a vapor cavity near a free surface have been conducted"'"

(Chahine, 1977; Blake & Gibson, 1981). Good agreement has been

found between predicted and observed features including the formation

L
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FIGURE 2-4. Theoretical collapse shapes for
initially nonspherical vapor bubbles (Chapman
Plesset, 1972).

of a pronounced spike in the free surface (Figure 2-5). For this

inviscid analysis, it was also determined that the same forces

responsible for bubble migration during collapse were also responsible

for bubble distortion. This latest work has been extended to

investigate vapor bubble dynamics near flexible surfaces and deformable

coatings (Gibson &Blake, 1982). The varying inertia and stiffness of

.. o
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FIGURE 2-5. Comparison of experiment and
theory for vapor bubble growth and collapse
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boundaries and coatings were used to construct a parameter space for

the research. It was speculated that surface modification could lead to

the repulsion of collapsing bubbles and result in the prevention of

cavitation damage.

."
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2. Non-Newtonian Analyses

Another approach toward diminishing cavitation damage has been

through research on the effects of fluid modification by polymer

additives. Many behaviors of these non-Newtonian fluids, such as rod

climbing and die swell (Bird, Armstrong & Hassager, 1977), are

considered counterintuitive with respect to the Newtonian behavior of

water (Schowalter, 1978). These polymer solutions often exhibit

viscoelastic behavior which can account for many of the unusual

phenomena. Cavitation suppression in macromolecular fluids appears to

arise from effects related to those demonstrated by situations involving

free surface boundary conditions (Hoyt, 1976) or exhibiting flow field

alteration (Chang & Schowalter, 1974).

To theoretically analyze a flow situation it is necessary to construct

a constitutive model which can accurately predict the stress field of the

system under various conditions of motion. This constitutive equation,

formulated to determine the stress tensor, a, must satisfy many

physical constraints and be broadly applicable, yet it should be useful

in a practical sense.

Under the constraint of incompressibility, "

V'v = 0 (2-12)

where v is the velocity vector, the general constitutive equation for an

.," .J
-. . . . . . . -- ..- S." . -. .

. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .
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unspecified fluid is,

a=-p1 (2-13)

where r is the extra stress tensor. For a Newtonian fluid the extra

stress tensor is given by,-

+ t
= Li[! (Vv) 1(2-14)

which may be rewritten,

2 (2-15)

where is the rate of strain tensor which is defined as,

j! QLY ( ) t. (2-16)

For a purely elastic material the relationship between stress and strain

is,

GI Ge (2-17)

77
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where G. is the elastic modulus and e is the strain tensor. The

viscoelastic nature of many non-Newtonian effects suggests a

combination of these two constitutive relations to describe

macromolecular solutions. N%,

The series addition of purely viscous and elastic elements describes

a Maxwell element, whose differential constitutive equation is,

, = pe (2-18)

where X is the fluid relaxation time. In integral form the Maxwell

element equation becomes,

t

r(t) = 2(u/X) exp[-(t-t')/X] e(t') dt' (2-19)

0

which introduces the concept of a memory function over past times t.

Unfortunately, this linear viscoelastic model cannot be generally valid

because it fails to satisfy the principle of material objectivity.

One approach to the formulation of constitutive equations has been

the modificaton of linear viscoelastic relations to satisfy this constraint.

Such manipulations require the use of specialized materially objective

operators such as corotational and codeformational derivatives. Many

constitutive models have been made (Bird, Armstrong & Hassager,

1977). However, the relative validity and applicability of these models

vary with the particular system under consideration. Even an excellent

_ 2-..-
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constitutive model can be of little or no use when the experimental flow

geometry is too complex to be theoretically tractable. This is

unfortunately the case in most phenomenological studies of cavitation

inhibition and suppression.

The simplest system which could exhibit these effects is a spherical

vapor bubble growing or collapsing in an unbounded viscoelastic fluid.

Such a system has been investigated theoretically and a large elastic

effect was predicted upon collapse (Fogler & Goddard, 1970). However,

the range of fluid and flow conditions investigated (large Deborah

number and/or large Reynolds number) was determined to be unrealistic

for modelling cavitation phenomena in dilute polymer solutions. More

realistic analyses of bubble growth were later performed but neither

experimental nor theoretical results demonstrated any significant elastic

influence (Ting & Ellis, 1974; Ting, 1975 and 1977).

For an unspecified incompressible fluid the Rayleigh-Plesset equation

becomes,

2o f
R (3/2) p P 2 + V dr (2-20)

R R
R

with,

o -

f[!-,tr dr 3 f(crr'P) d r
R R

and bubble dynamics predictions for various formulations of the extra
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stress tensor can be investigated. Several different fluid models have

been examined and compared to one another as well as to experimental

cavity collapse results (Pearson & Middleman, 1977 and 1978). It was -

found that as the elongation rate increased the agreement between

theory and experiment worsened, especially for viscoelastic liquids.

Nonspherical bubble dynamics in a viscoelastic liquid have recently

been studied in a preliminary way (Inge , Bark, 1982). This

theoretical analysis of the free, damped, surface-tension-driven

oscillations of a constant volume bubble revealed only small elastic

changes. The effect of dissolved polymer on such motion was predicted

to be mainly of a viscous nature, presumably due to the unstressed

state of the surrounding fluid. The significantly more complex analyses

of nonspherical bubble growth and collapse in both quiescent and

flowing fluids have been recently completed (Hara, 1983; Hara F,

Schowalter, 1984). Good agreement between theory and experiment was

reported for initially nonspherical cavities in both quiescent water and

dilute aqueous polymer solutions (Figures 2-6A and 2-6B). From these "

experiments it was concluded that without external flow, fluid rheology

(i.e. slight viscoelasticity) did not strongly influence either spherical

or nonspherical cavitation bubble dynamics. However, model predictions

demonstrated small but non-negligible effects for the nonspherically

initiated cavities. In addition, it was seen that an external flow field

which acts as the source of bubble deformation can significantly

influence the system dynamics through fluid rheology (i.e. elastic

memory). The flow field examined was an oscillating uniaxial

extensional flow with a variable strain rate.
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In particular, the contribution of viscoelasticity to the oscillating

nonsphericity of a cavity of constant volume was predicted to change

the amplitude of this flow induced deformation. The magnitude of this

effect was found to increase with increasing Deborah number,. - .

De I X/ (2-21)

which is the ratio of fluid relaxation time, X, to characteristic flow

time, t. Conditions which combined external flow and bubble collapse

were shown to magnify any differences which resulted from fluid

viscoelasticity. This prediction was concluded to be consistent with the

idea that in contrast to a purely viscous liquid, a viscoelastic liquid

would be influenced by the past history of an imposed flow.
..]-

However, the fundamental relationship between these model

predictions and practical cavitation inhibition effects is still far from

completely determined. Related observations by different researchers

have sometimes led to opposing conclusions. For example, Oba et al.

(1979) inferred from observations that bubble nonsphericity was

increased by polymer additives while Chahine and Fruman (1979)

attributed a stabilization of departure from bubble sphericity to the . -

prescence of macromolecules. In the light of these contradictory

reports, a related experimental study of bubble dynamics in a well

defined flow field should serve to further elucidate this most interesting

engineering research field.

. . . . . . . ...... ..--... . . .
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EXPERIMENTAL TECHNIQUES

1. Previous Work

Within this field of cavitation research, very few standard experimental

techniques have been developed. Research on hydraulic cavitation has

been conducted with water tunnels as the primary tools. These are

typically large facilities equipped to produce a closed-loop liquid flow

with various controllable parameters such as flow rate or pressure

4.Dpup #

liquid (water)

FIGURE 3-1. Schematic diagram of a closed-loop
hydraulic cavitation tunnel (Lauterborn, 1974).

(Figure 3-1). The liquid is usually pumped continuously through a test

section where cavitation on submerged bodies can be generated and

studied. More recently, experimental investigations of single bubble

dynamics have been undertaken in an effort to parallel theoretical

advances, thereby improving the fundamental understanding of these

.. ~ .*.% .*.* *. . ... % *. .*. .-. * . . .,.... -.
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phenomena.

During the past two decades, researchers have employed only two

primary techniques for cavitation bubble production. The earlier

spark-gap method for the generation of dynamic vapor cavities has been

used predominantly in studies involving either a very weak flow or no

flow at all (Naude & Ellis, 1961; Benjamin & Ellis, 1966; Kling ,

Hammitt, 1972; Chahine & Fruman, 1979; Blake & Gibson, 1981). In

this method a storage capacitor is rapidly discharged ( < 1/100,000 sec)

from several kilovolts across a pair of electrodes submerged in the test

region. In all but the most stagnant situation, however, these

protruding electrodes could have a disruptive effect on the dynamics of

the flow system. As a direct consequence of this problem the technique

of laser-induced bubble production, pioneered in the 1960s and refined

in the 1970s, has been adopted for use in this research.

The effects of a laser beam in a liquid were first investigated over

twenty years ago (Askar'yan et al., 1963). It was reported that the

local heating within a liquid volume from a high-intensity laser pulse

resulted in vapor bubble effervescence. The light source used was the

unfocussed and focussed beam from a ruby laser with a pulse length of

about one microsecond. With the advent of Q-switching, a technique

for producing ultra-short (10-50 nanoseconds), ultra-high-power

(100-1000 MW) light pulses from solid-state lasers, new phenomena

resulting from the focussing of such pulses within liquids were

observed and reported. These phenomena included stimulated Brillouin

scattering, intense acoustic impulses, dielectric breakdown, high

pressure shock waves and cavitation.

s- 7
. .* . .

.... .~....- ... .-.. ... .... . . . . . . . .. . . . . . .



I

28

Initial interest was directed towards examination of the laser-induced

pressure impulses within liquids (Bell & Landt, 1967; Carome et al.,

1967; Roach et al., 1969). The output from a Q-switched laser was

found to closely simulate an energy point source of small diameter

( < 100 microns) and very high energy density ( > 10' J/cm'). It was
I

further determined that this phenomenon was closely related to the

dielectric breakdown of the liquid and that, in fact, shock waves were

radiated from each point of breakdown within the liquid. The results
I.

of several investigations supported the idea that at sufficiently high

output energy a focussed laser pulse could consistently lead to

dielectric breakdown, plasma formation and vapor cavity nucleation at

the focal point within the liquid (Stamberg , Gillespie, 1965; Barnes ,

Rieckoff, 1968; Singurel, 1969; Felix , Ellis, 1971).

Despite these advances, the detailed analysis of laser-induced

cavitation bubble dynamics was only later made possible by the

application of high-speed photography to record the events

(Lauterborn, 1972). At that time both rotating drum and rotating

mirror cameras were used to study laser-induced cavity formation,

growth, collapse and rebound at framing rates of up to one million

.pictures -per second. It was reported that laser output energies of 0.1

to 1.0 joules in pulses of duration 30 to 50 nanoseconds were found to

produce cavities of maximum radius 0.1 to 0.2 centimeters with total

lifetimes of 0.5 to 1.0 milliseconds. Experimental techniques were L

further refined as the number and shape of the bubbles produced were

found to depend on the focal length of the single focussing lens.

Reproducible formation of spherical vapor bubbles, essential to the

present investigation of non-Newtonian effects, was accomplished by

".e. .. •..
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with the four boundary conditions,

v8 (Riz) 0

v (RoZ) 21rwR

v (r,0) : 0

v (r,h) : 2lrwr

was solved using an iterative finite difference scheme. The influence of

the ratio of gap height to gap width (h/g) was of particular interest.

The results showed that a value for this aspect ratio of at least unity

is required to insure a sufficiently large region of nearly fully

developed flow.

The cylindrical Couette device was subsequently designed,

constructed and modified several times before the final configuration

was reached (Figure 3-6). The outer shell of the rotating cylinder was

machined from aluminum and the shafting and bearings were stainless

steel. The flanged bushing connecting the rotor top to the shafting

was machined from brass. With these exceptions the primary material of

construction was PMMA. General system specifications are listed in

Table 3-3. Interchangeable stationary inner cylinders allowed two

distinct gap sizes of 5.4 and 9.2 cm with acceptable aspect ratios of

1.76 and 1.04 respectively. The lens mount was situated so the laser

pulse entered from below and was focussed upward into the test region.

The system was mounted on a nearly cubic steel channel lattice which
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turbulent flow velocity profiles for several values of the ratio of

cylinder radii (K) have been measured experimentally (Wendt, 1933).

These measurements indicated that the turbulent velocity was linearly

dependent on the radial position in the annular region, except near the

walls (due to turbulent boundary layer effects). Also, for sufficiently

small values of the cylinder ratio (K !5 0.8), laminar and turbulent shear

rates near the center of the annulus were approximately equal (to

within - 10%).

Wendt (1933) also studied the changes in the turbulent velocity

profile which resulted from different cylindrical end effects (rotating

bottom, stationary bottom or half rotating/half stationary bottom).

While these different conditions led to significant differences in the

magnitude of the fluid velocity ( 10-25%), the magnitude of the

turbulent shear rate near the center of the annular test region was

virtually unchanged (to within t 5%). To determine the extent to which

end effects, both top and bottom, modify the ideal laminar velocity

profile, an approximation of the exact Newtonian flow field in the

annular region was obtained. The 6-component of the equation of

motion,

{2 ( r)
(r / r,z) 0 (3-7)

Or r Or 8z26 - .

. . . .. '
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profile, ve, is a function of radial position, r, alone, and is given by,

21r K-R
2

v(r) = (3-4)
r K.

where w is the rotation rate in revolutions per second, R is the radius

of the outer (rotating) cylinder in centimeters and K is the ratio of

inner cylinder radius to outer cylinder radius. For these conditions

and geometry, the radial shear rate, is defined as,

re = r - (3-5)
p dr\ r/

and is given by the expression,

= 4~w~ - (3-6)

where r is the shear stress and p is the fluid viscosity. Therefore
for a fixed geometry (gap ratio and outer radius) this laminar shear

rate is a function of radial position and, of course, rotation rate. The

maximum shear rate variation over the diameter of a typical bubble

(0 :5 R(cm) : 0.5) was determined to be ( 2-6%) depending on the

maximum size of the particular bubble. For this geometry, the
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flow is strongly stabilized by centrifugal forces. The stability of this

system has been thoroughly studied both theoretically (linear

perturbation analyses) and experimentally (Schlichting, 1968).

In the case of steady-state flow in the annulus
between two concentric cylinders with the inner
cylinder at rest and the outer cylinder rotating
about its axis, no limit of stability can exist in
analogy with Couette flow (Re(crit) = -

A further confirmation of these theoretical
results was recently supplied by F. Schultz-
Grunow ... who was able to prove quite
rigorously that the flow between two concentric
cylinders of which the outer rotates and the
inner is at rest is completely stable....

It was established that although transition does
occur during the starting process, the flow
reverts to a laminar pattern when a steady-
state has been established....

It has thus been confirmed that the persistence ."-
of turbulence into the steady-state regime was
caused by imperfections in the geometrical
shape and did not signify that the theory had
failed. (Schlichting, 1968)

In addition, the criteria for the transition from laminar to turbulent

flow during an impulsive starting process have been investigated and

reported (Bird, Stewart & Lightfoot, 1960; Schlichting, 1968).

Neglecting end effects, the unidirectional laminar Newtonian velocity :7--
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From these theoretical predictions, an expression for the magnitude of

this steady-state deformation was determined. The nonsphericity,

expressed as the ratio of bubble oscillation amplitude (A) to the

equivalent spherical radius (R) was given by,

(A/R) (3-3)

where u is the liquid viscosity in poise, is the strain rate in sec - .

and a is the liquid surface tension in dyne/cm. These estimates

indicated that strain (or shear) rates of 100-500 sec' would be

required to produce deformation ratios (A/R) of 0.10-0.25 in bubbles of

maximum radius 0.2-0.5 cm in slightly to moderately viscous fluids

G = 0.01-0.20 poise). Preliminary experimental work on spherical

bubble dynamics in quiescent fluids indicated that a free distance (gap

size) of 5-10 cm would be sufficient for the undisturbed growth and

collapse of typical bubbles.

Stability of laminar flow was investigated for a four-roller apparatus .-

(Fuller & Leal, 1981) and a cross-flow cell (Scrivner et al., 1979).

Significant flow stability uncertainties inherent to these systems, over

the deformation rates of interest, finally prompted the decision to adopt

a cylindrical Couette experimental configuration. This concentric

cylinder geometry is known to produce an approximation to planar shear

flow for small gap sizes relative to the outer cylinde,- radius (Bird,

Stewart r, Lightfoot, 1960). With the outer cylinder rotating, even for

the large relative gap sizes required for the present research, laminar
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density in the focal region was extremely high and as a result,

electronic absorption, dielectric breakdown and bubble nucleation

proceeded almost instantaneously ( < 1 microsecond).

The simplest of the quiescent fluid cells was a

polymethylmethacrylate (PMMA) cuvette with a single lens mount and a

removable top (Figure 3-4). The interior of the chamber approximated

a cube of dimension 11.5 centimeters. In this cell, spherical and

nonspherical bubble dynamics in quiescent liquids were investigated.

The second cell was designed to accommodate two lenses situated on

opposite walls (Figure 3-5). In this coaxial configuration the laser

pulse could be focussed and then collimated by matching the focal

lengths of the lens to their separation. The energy of the emerging

beam could be measured and referenced to reveal the energy used in

the nucleation process (see Appendix A).

The constraints of the flow system dictated the choice of cylindrical

Couette geometry over a four-roller or belt-type apparatus. These

requirements included the production of a stable laminar flow field of

sufficient strength to induce bubble deformations large enough for

photographic analysis. In addition, enough free volume was necessary

to allow bubble growth and collapse with negligible wall effects.

Finally, temperature variation due to viscous dissipation had to be

negligibly small.

To determine the system size, estimates of the effects of flow

strength and liquid properties on bubble deformation were made.

Numerical simulations based on Hara's model (1983) of a constant volume

bubble deforming in a uniaxial extensional flow field were performed. p2.':
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FIGURE 3-3. Typical aspheric laser focussing
lens (Melles Griot, 1981).

For muftimode laser operation the spot radius, s, is given by,

s V f tan(6) f'8 n'fB (3-1)

where f is the lens focal length in air, n' and fV are the refractive

index and lens focal length, respectively, in the medium of interest and

6 is the beam divergence which is small (see Table 3-1). The spot

depth, d, is then given by,

2(sf') 2(n'f)'B
d = - - - (3-2)

D D

where D is the beam diameter. With a small spot size, the energy

.-..,
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laser focussing lenses:

Melles Griot (1981) plano-back aspheric
lenses with anti-reflective MgF 2 coating 0

product no. f.l. (air) diameter

01-LAG-002/066 12.0 mm 17.0 mm

01-LAG-005/066 18.0 mm 24.0 mm

01-LAG-117/066 25.0 mm 32.5 mm

01-LAG-007/066 26.5 mm 30.0 mm

01-LAG-010/066 33. 0 mm 52. 0 mm

01 -LAG-012/066 34.5 mm 38.0 mm

01-LAG-013/066 35.0 mm 50.0 mm

01-LAG-123/066 37.0 mm 52.0 mm

01 -LAG-011/066 42.0 mm 45.0 mm

TABLE 3-2. Laser focussing lens specifications.

In order to accomplish several specific experimental objectives, two

quiescent fluid cells and a cylindrical Couette flow system were

constructed. A design factor common to all three was the

interchangeable flush mounting on an external wall of a single aspheric

lens. These short focal length converging lenses (Table 3-2) were

used to precisely focus the laser light into a small spot (Figure 3-3).

.e .



- .. , .. o °

32

FAI
l00

FIGURE 3-2. Optical components of the ruby
laser system (Apollo Lasers).

.V.o

.P 4

to alignpthe ottal ents ichmp wer mone tedonants stresreldev

salmin s ri h hrevlaeo h cpctrbn upyn h

laer fls laser syThem outputl bamers a dimetr"o"aout on

. . . . . . - - ~ . . *. .o..

Teaximter, whichtpuld eergyowssed.... about 100.r.on, ad va

durtiono f 1 id p n et 30eans econds. T he e ri ewatched bat cic t orue--

smallcgsinti a o sath chasrea oteme rtue caaof 20 n su01 orp rovn te--

lser fla-sh amrprouiiiy Ah outpu powe h ela imeon aer was b ut soe\

cetoaignete opical coldobent hichsm uned d w toa o a0 sicress-reievd a"

alum in um rail. 
.- :



31

pulsed laser

Apollo Lasers Model 5H (No. 31002)
Q-swithched ruby laser system

maximum energy 1.5 J

pulse width 10-30 nsec

peak power : 100 MW

beam divergence : 3-5 mrad

alignment laser:

Hughes Model 3225H-PC
5mW polarized HeNe laser

Hughes Model 4020(F)
laser power supply

refrigerated circulating bath

Neslab RTE-4

heating capacity : 800 W

cooling capacity: 400 W

reservoir volume 5 -

circulation rate : 13 t/min

absorptive filters:
- - -

Schot glass neutral density filters

filter thickness transmittance

NGS-1 1 mm 55%
NG4-2 2 mm 15% -.
NG4-3 3 mm 6%

TABLE 3-1. Experimental laser system components.

V -ft.. ft. "
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reproducible nonspherical vapor cavities in a quiescent liquid (Hara,

1983).

2. Experimental Apparatus

The primary goal of this experimental program has been to investigate

the effects of polymer additives on the growth, collapse and

simultaneous deformation of model cavitation bubbles in a well defined

flow field. Thus the design criteria for the experimental system were

quite clear-cut and yet relatively flexible. Reproducible bubbles of

variable size were to be optically induced and photographically recorded

nonintrusively within a system of fairly strong straining or shearing

flow.

The experimental equipment for this research can be neatly divided

into four subsystems, each with its own set of performance criteria.

These four include the laser system for bubble production, the test

cells and flow system, the photographic systems for data acquisition and

the associated electronic systems. The components of each subsystem

were either designed and constructed or specified and purchased,

modified as was necessary and ultimately adapted for integrated

operation.

The focus of the research apparatus was the laser subsystem which

was comprised of the laser components, the refrigerated bath circulator

and the laser power supply. The specifications of this subsystem are

given in Table 3-1. The laser system consisted of a pulsed ruby

oscillator which was actively Q-switched by a Pockels cell (Figure 3-2).

r-7
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using a submerged lens of short focal length (Lauterborn, 1974). In

addition, slightly nonspherical bubbles, oblong bubbles and multi-

bubble systems could be produced, although not repeatably

(Lauterborn, 1976).

Upon initial examination, this vapor bubble formation from a high-

energy plasma at the nucleation site would seem to necessitate the

inclusion of an energy (or temperature) equation for the liquid in any

realistic modelling effort. However, as Lauterborn (1972) has reported,

these laser-induced spherical cavities in water realize Rayleigh's

isothermal empty-bubble model. This somewhat unexpected agreement is

due to the extremely fast nature of the nucleation and initial bubble

growth phenomena. Initial vapor expansion proceeds so quickly

(without time for heat transfer to the surrounding fluid) that the

bubble contents rapidly cool to near ambient temperature. Thus,

Lauterborn's observation leads to the conclusions that (a) for these

laser-induced bubbles, inertial effects dominate thermal effects and that

(b) these laser-induced cavities realistically model actual cavitation

bubbles.

Laser-induced or optical cavitation, as it has come to be known, has

been subsequently used in conjunction with ultra-high-speed

photography and high-speed holography to examine the dynamics of

cavitation bubbles in a myriad of experimental circumstances such as in

a highly viscous liquid, near a solid boundary or a free surface and

interacting with other bubbles (Lauterborn & Bolle, 1975; Lauterborn

Ebeling, 1977; Lauterborn, 1979). Most recently, optical cavitation has

been used to investigate the effects of fluid viscoelasticity on

. . . .
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FIGURE 3-6. Cylindrical Couette flow system dimensions.
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test section 2

outer radius R= 19.37 cm0-

inner radius : Ri = 13.97, (10.16) cm !::.!i
gap ratio (Ri/R o)

0.72, (0.52)

gap width :g 5.4, (9.2) cm7

gap height h = 9.525 ;m

aspect ratio : (h/g) 1.76, (1.04)

containment tank:

horizontal dimension S = 48.90 cm

vertical dimension H = 13.97 cm

fluid volume V 16.5, (19.5) 1

lens mounts

focal radius : rf 16.51, (14.605) cm

drive systems

Leyland Faraday M278
1 hp AC electric motor

Staco Energy Products 3PN1510
0 - 120/140 V variable autotransformer

General Electric 184T
* 5 hp 3-phase AC electric motor

General Electric AFTROL II
variable frequency drive controller

TABLE 3-3. Cylindrical Couette flow system specifications.

p..........................................
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45.2 em ""---

080 cm -
$5..?2 CM

FIGURE 3-7. Flow system support lattice and
p ositive drive apparatus.

also supported the drive motor (Figure 3-7). Rotation of the outer

cylinder was accomplished by a positive drive system comprised of

timing gears and belts. Rotation speed regulation and gradual start-up

were achieved by supplying power to the motor from a variable

frequency drive controller. Pertinent experimental system calculations

• ° ...
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g(cm) .w(rpm) v (cm/s) i(sec-l) ia(poise) P(hp) AT(C/min)

-0 0 0 -0.00 0.00

9.20 360 750 85 0.01 0.06

5.40 360 750 105 0.01 0.06--

0.06 0.25 0.02

0.16 0.40 0.05

1.05 0.85 0.29

5.40 480 1000 140 0.01 0.13 0.005
ITo .i 0.06 0.50 0.03

II0.16 0.80 0.08

5.40 575 1200 170 0.01 0.25 0.01

Iit0.06 1.00 0.05

0.16 1.60 0.12

5.40 720 1500 210 0.01 0.60 0.01

5.40 865 1800 255 0.01 1.00 0.015

TABLE 3-4. Sample flow system calculations.
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are presented in Table 3-4.

Due to the extremely rapid nature of the phenomena under

investigation, high-speed photographic techniques were required for

data acquisition. Nominal experimental conditions were found to result

in cavities whose total lifetime, including rebounds, was about one to

two milliseconds. The duration of the period of greatest interest, from

initiation to the first collapse, was much shorter, in the range of 500 to

1000 microseconds depending on bubble size and fluid properties.

Two distinct photographic systems were employed for data

acquisition. The first was a single-exposure system of high resolution,

while the second was a high-speed framing system. The single

exposure system, which relied heavily on event reproducibility was used

primarily in preliminary studies of spherical bubble dynamics in

quiescent fluids. The high-speed system was used for the less

repeatable experiments involving bubble deformation, flow system

dynamics and bubble energy measurements.

The single exposure system consisted primarily of an SLR camera

and a short-duration high-intensity flashlamp (Table 3-5). By

synchronizing the flashlamp to the laser output pulse through the delay

generator and maintaining the camera in an alert state, it was possible

to record a single photograph of each laser induced bubble at any point

in its lifetime. Thus, by systematically varying the delay period, a

complete history of an average bubble could be assembled from the

single exposures of individual bubbles. Reproducibility from shot-to-

shot was therefore an essential feature of this experimental scheme. A

typical exposure time was roughly one microsecond and regular

.. .. .. .. .. ......... .. .°°- . . -.. -.......- -. % - . - ",".,. "%;.--.°
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SLR camera

Hasselblad Model 500C

w/Zeiss 80 mm planar f/2.8 lens

2"-8" bellows extension

55 mm extension tubes (2)

Polaroid film magazine 100

flash unit
- -

EG &G Electro-Optics

FX-279 xenon flashbulb

FY-611 trigger module

PS-302 power supply

Melles Griot

02-RPM-008 paraboloidal reflector

02-REM-003 ellipsoidal reflector

01-LFP-035, 037 and 041 fresnel lenses

film

Polaroid 667 (ASA 3000)

TABLE 3-5. Single-exposure photographic system components.

as ..
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photograph intervals varied from 20 to 50 microseconds.

The principal components of the high-speed photographic system

were the framing camera and the electronic flash unit (Table 3-6). The

Dynafax unit, a rotating drum camera (Figure 3-8), recorded 224 "Y

frames (7.50 mm x 10.0 mm) on a single 860 mm length of standard

35mm film at a rate adjustable from 200 to 35,000 frames per second

(fps). Once the camera was brought up to speed it remained alert

until the film was exposed by the variable duration (8.60, 11.15,

14.85 or 22.35 msec) square wave pulse from the xenon flashlamp.

This flash unit was also linked electronically to the the laser output for

precise synchronization. As with the single exposure system, the r
* .o

transient vapor cavities were backlit and appeared dark against a light

background in printed exposures.

As previously mentioned, synchronization of flash pulses to N

experimental events was accomplished and varied through the use of a

digital delay generator (Table 3-7). Typical delay times ranged from 0

to 10 milliseconds with resolutions of 0.1 to 1.0 microseconds. Laser

bubble energy measurements were made by using a laser calorimeter

(Table 3-7). This unit was used to record energies of 0-2 joules with

a sensitivity of 1-10 millijoules. In addition, two electronic trigger

devices, one for each flashlamp, were constructed and used to couple

the delay generator to the backlighting systems.

.... *.-, .,.* ***"~***.****%***~~ .--.. .
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high-speed framing camera

Cordin Dynafax Model 350

w/Canon 18-108 mm f/2.5 zoom lens

Fujinon 105 mm f/4.5 close-i: lens

40 mm, j" and *" extension tubes

electronic flash unit

Cordin Model 357

maximum output 106 pbcp

minimum pulse 8.6 msec

Melles Griot (see Table 3-5)

08-MLB-003 high-energy laser mirror

ellipsoidal and paraboloidal reflectors

acrylic fresnel lenses

film

Eastman Kodak

Technical Pan 2415 (ASA 125)

TRI-X Pan (ASA 400)

2475 Recording (ASA 1250)

TABLE 3-6. High-speed photographic system components.

- - S .°"
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1.. Objective Lens 9. Collimating Relay Lens
3. Mask 10. Exit Diamond Stop

Fiel l;ants Stop Xmaging Relay Lens
5. Entrance Diamond im
6. Entrance Relay Mirror I locusing Mirror and

Entrance Relay Lena Ground Glass
Rotaing irro 15.Focusing Eyepiece

FIGURE 3-8. Optical schematic diagram of the
high-speed framing camera (Cordin, 1965).
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digital delay generator

Berkeley Nucleonics Model 7010

delay ranges:

0-10 ms ± 100 ns

0-100 ms ± 1 us

0-1 sec ± 10 ps

0-10 sec - 100 us

0-100 sec - 1 ms

laser calorimeter

Apollo Lasers digital energy meter

energy ranges:

0-200 mJ -t 1 mJ

0-2 J + 10 mJ

0-20 J ± 100 mJ

TABLE 3-7. Additional experimental electronic components.

t.• .'-
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EXPERIMENTAL RESULTS AND DISCUSSION

1. Preliminary Experiments

Initial experimentation with laser-induced cavitation in liquids was

focussed on the dynamics of reproducible spherical bubbles in quiescent

viscous and viscoelastic fluids. For these early tests, the quiescent

fluid cell and single-exposure photographic system were employed in the

configuration shown in Figure 4-1. A typical sequence of experimental

events was as follows

(a) preparation

- test cell filled with fluid of interest

- camera and flashlamp aligned and focussed

- camera loaded and shutter cocked

- delay period and laser voltage set

(b) experimentation (firing sequence)

- laser capacitor bank charged

- camera shutter opened

- main trigger fired

(laser and flashlamp fired in synch)

(c) post-experimentation

- camera shutter closed

- Polaroid photogaph developed

. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .
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f13 65

8

I SYSTEM TRIGGER 8 DELAY GENERATOR

2 LASER POWER SUPPLY 9 FLASH POWER SUPPLY

3 RUBY LASER 10 FLASHLAMP HEAD

4 HeNe LASER 11 FRESNEL LENS AND/OR

5 HeN. LASER FLASH DIFFUSER

6 COOLING SYSTEM 12 QUIESCENT TEST CELL

7 LASER FILTER 13 SLR CAMERA

FIGURE 4-1. Schematic diagram of the
experimental configuration for single-exposure
quiescent fluid tests.
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From several such experiments, with constant laser output and varying

delay periods, complete bubble lifetime sequences (from initiation to

collapse) were assembled. Two typical sequences of model cavitation

bubbles in distilled water (DH20) are shown in Figures 4-2A and 4-2B.

From these tests, the results of previous workers (Lauterborn, 1972;

et al.) regarding the dynamics of spherical laser-induced bubbles in

quiescent Newtonian fluids were confirmed. It had been concluded that

these spherical cavities closely follow the dynamic behavior predicted by

the somewhat idealized Rayleigh-Plesset equation (see Chapters 2

and 3). In particular, the linear theoretical relationship between

bubble collapse time, t, and maximum bubble size, RD, predicted by

Rayleigh's original analysis (equation 2-2) was again substantiated by

these experimental data. For example,

(tc/R.) = (225/0.23) (Figure 4-2A)

= 978.3 Us/cm

(350/0.36) (Figure 4-21B)

= 972.2 us/cm

The success of that inviscid analysis demonstrates the dominance of

inertial effects over viscous effects in such phenomena. Furthermore,

the addition of dilute polymer solutes (polyacrylamide

0 -< C(wppm) :S 1000) was found to have only a minimal effect on

spherical bubble dynamics in an otherwise quiescent fluid. This result

had been previously predicted (Ting, 1975) and also experimentally
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frame a (mm) ( (mm) r (mm)

1* 50O- 14- 21.4 0.5

2 621 32 40.0

3* 65 40 47.0

4 691 48 54.3

5 * 66 51 55.7

6 661 56 59.7

7* 63 56 58.2

8 62 59 60.0

9 * 571 561 56.8

10 531 57 55.8

11 * 43 501 47.9

12 35 47 42.6

13 * 21 36 30.1

* - the data from these frames must be multiplied
by a correction factor of 1.03 due to a camera
magnification inconsistency which resulted in
an alternating frame size difference

TABLE 4-3A. Raw data from enlargements (see Figure 4-5).

.............. . . .
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bubble shape ellipsoid of revolution

V - bubble volume

r,R -equivalent spherical radii

prolate spheroid

a,a -major semiaxes

Ob- minor semiaxes

oblate spheroid

a,a - minor semiaxes

Ob- major semiaxes

relationships

V (4/3)wR 3 =(4/3)iab 
2

therefore, RI abl

similarly, rs 43

deformation amplitude

a2 UA =a -R =2(R -b)

TABLE 4-2. Deformation analysis relationships.

(a, 0 and r are measurements from photos
a, b and R are actual values for bubbles)
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0.5 cm

FIGURE 4-813. Flow-induced nonspherical bubble
shape from the experimental shear field.



for small amplitude deformations (A- a2), bubble shape has been

approximated by an ellipsoid of revolution with orientation described

above (Figure 4-8B). The equations describing the deformation

amplitude (A) are presented in Table 4-2, as are the geometric

relationships for the two cases of prolate and oblate spheroids. These

data analyses have been used to quantify the photographic results

displayed in Figure 4-5. Raw data from the enlargements are presented

in Table 4-3A and reduced data describing the actual cavity are

presented in Table 4-3B.
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2-d Extension Axial Extension

FIGURE 4-8A. Bubble shapes created by two
and three-dimensional flow fields (Hara, 1983).

by one-half the original shear rate (ik) Since bubble growth and

collapse are extremely rapid, very little bubble rotation is expected to

occur over the short time scale of experimental interest. Thus, bubble

deformation is expected to follow that which would be induced by the

extensional flow field alone. In addition, Hara has demonstrated that

the bubble shapes created by two- and three-dimensional extensional

flows are indeed similar (Figure 4-8A), and for small values of bubble

nonsphericity (A/R), the shapes become nearly identical. Therefore,

S. . *•*..*. *,

., .. .. ,, :, .. .. .- ., .. . * , .. ........... ,.. ... .*. .. . .::.:,.-......-,..;--.
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z .i

FIGURE 4-7. Uniaxial extensional flow field
streamlines with and without model bubble
presence (Hara, 1983).

Rotational symmetry of the bubble shape, about its axis of initiation for

tests in quiescent liquids or about the axis of shear (extension) for

experiments (theory) involving flowing fluids has been assumed. For

the experimental situation of a two-dimensional imposed flow field, this

assumption was not strictly correct. However, the experimental shear

field can be represented by the linear addition of a purely extensional

field and a purely rotational field (all two-dimensional). For these

component flow fields the strain rate and rotation rate are both given

-..- .
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a b. 0.5

C. 0.0

d. -0.5

FIGURE 4-6. Nonspherical bubble shapes for
several values of (aa/R) (Hara, 1983).

and minor bubble axes (the largest horizontal and vertical dimensions).

Neither the measurements of bubble axes at additional angles nor the

inclusion of additional spherical harmonic terms, a2 (t)Y°(8,) and/or

a,(t)Y°(0,O), in the theoretical description were found to improve the

self-consistency of experimental data or the applicability of the

theoretical model (Hara, 1983).

rIn the present research a similar approach has been adopted. ..-
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2. Data Analysis Techniques

Quantitative analysis of the raw data was accomplished through a

straightforward extension of the method used by Hara (1983). In both

the interpretation of model predictions and the fitting of experimental

data, Hara adopted a slight variation of the standard expansion in

terms of spherical harmonics (equation 2-10) to describe nonspherical

bubble shapes. Hara assumed an axisymmetric shape given by,

r(e,o,t) =R(t) (Y2(0,0) (4-1) ,

where r(6,,t) describes the shape of the bubble surface for the

specified spherical coordinates (8,0) and time (t), R(t) is the time-

dependent equivalent spherical radius (that of a spherical bubble of

equivalent volume) and a2 (t) is the time-dependent amplitude of the

spherical harmonic, Yz(8,). Computed bubble shapes for a wide range

of the ratio (a2/R) were presented by Hara (Figure 4-6).

This technique was particularly applicable to the analyses of

uniaxially imposed bubble deformations resulting from either

nonspherical bubble initiation or from an external flow field. Hara's

imposed model flow was a uniaxial extensional field (Figure 4-7) which

resulted in small amplitude (a2 ) deviations from sphericity (relative to

R). Bubbles which were initiated nonspherically exhibited somewhat

greater deformation amplitudes (though still less than R).

Hara also concluded that the bubble shape could be acceptably

analyzed from experimental photographs simply by measuring the major .".

-A
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ALL

0 00

FIGURE 4-5. High-speed sequence of
nonspherical bubble dynamics in a quiescent
glycerol/water solution.
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framing rate 20,000 fps

recording time 11.2 msec

exposure time 2.7 Usec

frame separation 50 Usec

F/stop 2.5

shutter speed B

flash duration 8.6 msec

flash intensity 106 pbcp

TABLE 4-1. Typical high-speed photographic parameters.

were enlarged roughly 18.5 times and automatically photocopied. The

quality of these prints was adequate for quantitative analysis and the

effort and cost involved were small in comparison to those for frame-by-

frame photographic enlarging.

A small number of trials involving nonspherically initiated cavities in

quiescent Newtonian liquids were carried out. These experiments

revealed surface tension driven oscillations imposed on spherical bubble

growth and collapse, as previously predicted theoretically

(Hara r, Schowalter, 1984) and demonstrated experimentally (Hara,

1983). A typical sequence of nonspherical bubble dynamics in a

quiescent glycerin solution (85 weight-percent glycerol in water) is

shown in Figure 4-5. This bubble history was produced by making

microfilm enlargements of each frame, then collating and reducing the

prints.
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0.4 cm 00"-

t =OPS 45 i 95 ~145 I

o 0
195 245 295 3

FIGURE 4-4. Typical high-speed photographic
sequence of a nearly spherical cavity in
quiescent distilled water.

....-. *:.?-***



FIGURE 4-3. Experimental configuration with
the high-speed photographic system for
quiescent fluid tests.
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confirmed (Chahine & Fruman, 1979; Hara, 1983).

The next steps involved the adaptation of the high-speed framing L

camera and electronic flash unit to the bubble production system. A

somewhat new experimental configuration was required for the high-

speed photographic system (Figure 4-3). For pilot experiments in

quiescent fluids, the sequence of events was similar to that for the

single-exposure system with one exception. Prior to starting the firing

sequence, the high-speed framing camera had to be gradually brought

up to the proper framing (rotation) rate. Parametric runs were then

carried out to test the effects of various lighting, exposure, developing

and printing techniques on the quality of the raw photographic data.

It was determined that the single most important quality of the

photographic images was high contrast between bubble and background.

The best results were achieved by using Kodak Technical Pan Film 2415

with a wide open camera aperture (f/2.5) and the maximum intensity

flash setting available (8.6 msec duration at 1,000,000 peak beam

candlepower). Although this film was slower than those used in other

trials (Kodak TRI-X and 2475), its extremely fine grain and high

contrast index (2.6 when processed with Kodak D-19 developer)

resulted in high-resolution negative images. A sample high-speed

sequence of a slighty nonspherical bubble in distilled water is shown in

Figure 4-4. In addition, typical values for several high-speed

photographic parameters are presented in Table 4-1.

It was further discovered that the analysis of the high-speed

sequences (10 to 25 frames of interest) could be facilitated by the use

of a microfilm reader/printer (3M Model 500). The 7.5 by 10 mm frames

. -. .
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f rame t (p.sec) R (cm) A (cm) -

0 0.00

1 30 0.114 ±0.004 *.153 ±0.002

2 80 0.207 +.117

3 130 0.251 +.096

4 180 0.281 +.079

5 230 0.297 +.058

6 280 0.309 +.035

7 330 0.311 +.025

8 380 0.311 +.010

9 430 0.303 +.004 ~b

10 480 0.289 -.012

11 530 0.255 -.026

12 580 0.221 -. 039

13 630 0.160 -. 048

680 0.00

TABLE 4-3B. Reduced data from analysis (see Figure 4-5).
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3. Flow System Experiments

The experimental investigation of shear flow induced bubble deformation

has constituted the major fraction of this research effort. To this

extent the high-speed framing camera and electronic flash unit were

adapted for use with the cylindrical Couette flow system (Figures 4-9A

and 4-9B). To properly enter the flow system test region from below,

the laser output pulse was modified from horizontal to vertical by

reflection from a high-energy laser mirror. A coaxial configuration of

several components was required to insure undistorted, backlit imaging

of the cavities in the test region (Figure 4-10).

Preliminary experimentation using the flow system was undertaken

with a highly viscous (TI 1.05 poise) glycerol/water solution. Bubbles

which were produced and photographed in a quiescent test region

(w = 0 rpm) grew and collapsed spherically (within the limits of

measurement error). In addition, these model cavitation bubbles closely

followed the aforementioned dynamic Rayleigh behavior. These

observations confirmed that no serious asymmetric effects had been

introduced by the flow system design.

Next,- experiments were carried out with an outer-cylinder rotation

rate (w) of 360 rpm (shear rate 100 sec'). As expected, bubble

deformation (elongation along the axis of shear) was observed and

measured. The deformation amplitudes (A) were found to be small

relative to the steady-state deformation (equation 3-3) predicted by the

constant volume bubble modelling (0.01 cm versus 0.20 cm). As a

result, the uncertainty in the deformation amplitude measurements was

large, up to ±20% (I0.002 cm).

*. * *. .. . .. *.* * ,. - ~.. ... .... ... ..~... .... ... ... .-.
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15 14 7 6

13 4

12
10 F

I SYSTEM TRIGGER 9 FLASH POWER SUPPLY

2 DELAY GENERATOR 10 FLASHLAMP HEAD

3 LASER POWER SUPPLY 11 FRESNEL LENS AND/OR

4 RUBY LASER FLASH DIFFUSER

5 H*N9 LASER 12 FLOW SYSTEM SUPPORT

6 HeN. POWER SUPPLY 13 COUETTE FLOW SYSTEM

7 COOLING SYSTEM 14 FLOW SYSTEM MOTOR

8 LASER FILTER 15 HIGH-SPEED CAMERA

FIGURE 4-9A. Schematic diagram of the

equipment configuration for flow experiments.

......



FIGURE 4-9B3. Photographs of the experimental
system in shear flow test configuration.
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To minimize this uncertainty, an averaging scheme was introduced

under which several (usually five) bubble sequences were photographed

under identical experimental conditions. These were then

nondimensionalized with respect to maximum bubble radius [R/R.] and a

pseudo-Rayleigh collapse time [t/r]. The collapse time (I), used to

determine this dimensionless time, is defined as the experimental

collapse period. The details of its determination and use are described

below. The reduced data were then averaged to produce composite

sequences of (a) dimensionless radius versus dimensionless time and (b)

deformation amplitude (dimensional) versus dimensionless time. The

resulting composites were much smoother than the individual sequences

of reduced data. As a result, they were more easily compared to one

another and to theoretical predictions. In addition, the amplitude

measurement scatter for the composites was reduced to approximately

= 10% (± 0.001 cm). For both the reduced data and the composite

sequences, the bubble radius measurement uncertainty was minimal

(less than ± 2%).

Rayleigh's empty bubble analysis has shown the collapse time, t. to

be a linear function of maximum bubble radius (equation 2-2). Since

these laser induced cavities closely followed this symmetric behavior,

the total bubble lifetime, At, was very nearly equal to twice the

Rayleigh collapse time. Thus, an experimental collapse period, E,

normalized by the maximum bubble radius, was determined from the

average ratio of total lifetime to maximum radius for'several bubbles

=.
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under identical experimental conditions,

n

(W/R.) = (1/n) E [At/2R]i (n = 5) (4-2)
i=1 -

The uncertainty in the maximum bubble radius (±1%) was found to be

significantly less than the uncertainty in the total bubble lifetime (see

Table 4-4). Therefore, the maximum bubble radius values [R,]. were

used to determine the experimental collapse period values (r from the

normalized collapse period (r/R.). By using the appropriate value of r".

for each bubble sequence,

r. (r/R.) [R.]. (4-3A)

n
= ([R.] /2n) [At/RJ] i  (n 5) (4-3B)

i=1 '-.

the results for several bubbles of different (but similar) sizes were

temporally normalized and averaged to produce a composite sequence

(equation 4-4).

In addition, the ranges of the dimensionless parameters were seen to

be, e

0 < (R/R0) S I

0 s (t/r) s 2

- . - . . . ..
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with,

(R/R.) - 0 at (t/i) = 0

(R/R0) 1 at (ti) = 1

(R/R.) =0 at (tOc) =2.

Relative to the experimental uncertainty, the effect of maximum bubble

size on the deformation amplitudes of these model bubbles was

practically insignificant. The measurements of maximum bubble radius

and maximum deformation amplitude were found to be completely

uncorrelated for otherwise identical experiments. The range of

maximum bubble sizes was fixed for all flow experiments,

0. 4 5 R o (cm) :5 0. 5

The composite maximum bubble radius (RO) for a set of Ci) identical

experiments was defined as the arithmetic mean of the (i) individual

maximum bubble radii. -'

Significant quantitative results were first obtained for flow

experiments using distilled water (DH20). Composites of bubble

sequences (five) were made for several rotation speeds between

0 and 1000 rpm. The spherical dynamics of all these bubbles were

essentially identical. A profile of average dimensionless radius

(equivalent spherical radius) versus dimensionless time is presented in

Figure 4-11. Dimensional spherical parameters for these experiments

: ..:

; :, ,.':,-:, ".:.,': ..:...' ';.:,-'. ... ; .. :................................................................-.-.......'.-.-...--:.... .:



79

0000000000 0

0 0
0 0

00

0 -

0 0

It/TI
FIGURE 4-11. Dimensionless radial profile
composite for bubbles in distilled water.
(all rotation/shear rates -see Table 4-4)
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w(rpm) .(cm) 2t/, (usec/cm)

0 0.448± .004 1965 ± 60

360 0.463 ± .004 1949 ± 53

480 0.458 ± .004 1944 ± 30

575 0.474 ± .004 1921 ± 34

720 0.446 ± .004 1955 ± 28

865 0.427 - .004 1902 ± 30

TABLE 4-4. Dimensional spherical
parameters for DH20 experiments.

are presented in Table 4-4. Average deformation amplitude [A] versus

dimensionless time for four composite cases is presented in Figure 4-12

(the results for 480 and 720 rpm were omitted simply for graphic

clarity).

This average amplitude was arrived at by interpolating and

averaging the individual values over the range of dimensionless time as

follows,

n
T = (1/n)0 A(t) (4-4)

i=1. .

with t. [t/[] "'

for 0 :s [t/] s 2.

7 ..
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FIGURE 4-12. Composite deformation amplitudes
versus dimensionless time for bubbles in DH2O.

symbol °(rpm)

0 0

O 360 105

575 170

0865 255

.................... o.........

.'.~.' . . . . .



82

where A. is the deformation amplitude of each sequence at the particular

dimensional time, tj, corresponding to the appropriate dimensionless time

[t/]. The average dimensionless bubble radius (R/R.) is determined

similary from the dimensionless radial profiles (R/R.) of each particular

bubble sequence.

As seen in Figure 4-12, the flow ind-iced deformation amplitude grew

fairly smoothly from inception until maximum deformation was reached

near a time [t/] of about 1.4. Interestingly, this point occured well

after maximum bubble size was reached, near a time of about 1.0. As

bubble collapse continued, the deformation amplitude quickly decayed to

nearly zero at complete collapse ( [t/] = 2.0 ). As expected, the

deformation amplitude grew more rapidly and to a larger maximum value

as the flow strength was increased. Figures 4-13A and 4-13B show the

effect of flow strength on maximum deformation [max ] and deformation

growth rate [dA/dt] respectively. Deformation growth rate was defined

as the linear least squares slope from the origin through the data

during bubble growth. It is given by,

10

(t/A) A'(t/A) -

[dA/dtJ ] (4-5)

10
(tiA)2= "'

for 0< [t/-] S 1

where [tI] /(10).

." .u',.. ee' -. '.o.,..'.=...,o•.'.o'.,.............................................................. =. • '
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FIGURE 4-13A. Maximum deformation amplitude
versus flow strength for bubbles in DH2O.
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FIGURE 4-13B. Deformation amplitude growth
rate versus flow strength for bubbles in CH2O.
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In both cases the data displayed linear relationships. These are,!r
[max A](1 0 ') = 0.160(.)

.3
• = 0.547(i) (4-6)

sow"

[dA/dT] (10') - 0.128(w)

= 0.4365(6). (4-7)

For an impulsive rotation under these experimental conditions of F

concentric cylindrical geometry and Newtonian rheology, the flow field

dynamics, except for the quiescent case, were predicted (Bird,

Stewart f. Lightfoot, 1960; Schlichting, 1968) to lie in the turbulent

regime, at least until a steady-state flow was achieved (see Chapter 3).

The transition speed for cylinder rotation was defined as the constant

angular velocity for which an impulsive flow start-up would

(temporarily) result in turbulent flow conditions. For this experimental

geometry it is given by,

= 3400(v)

= 34 rpm (DH20) (4-8)

for this situation where v is the fluid kinematic viscosity (W/p) in

(cm2 /sec). Despite the possible persistence of turbulent flow conditions

within the test region, the radial shear rate profile was assumed to

•* * _Z,



86

approximate that for the laminar situation (equations 3-6). It was

anticipated that any turbulent velocity component(s) in the r- and/or z-

direction(s) would be insignificant relative to the dominant 9-component ":

and that the streamlines would remain essentially unidirectional, as in

laminar flow. Flow visualization experiments of entrained air bubbles

gave qualitative support to these assumptions (Figure 4-14).

Quantitatively, the experimental results (turbulent flow field velocity

measurements) of Wendt (1933) (see Chapter 3) were interpolated for

the present experimental geometry (K 0.72). Close to the center of

the annular gap, laminar and turbulent shear rate values were the same

(to within - 5%).

To further investigate the dynamic flow-induced bubble deformations,

particularly the effects of additives, an experimental scheme involving

several solvents and polymer solutions was conceived. The essence of

this program is presented in Figure 4-15 and a summary of the

experiments is given in Table 4-5. Figure 4-15 represents the possible

space of simplified fluid rheology (described by v) as a function of flow

strength (given by w and ii. The vertical dashed lines indicate the

experimental rotation speeds (shear rates). The horizontal dashed lines

describe-the Newtonian rheology of the constant viscosity solvents.

Shear-thinning polymer solution behavior is displayed by the sloping

sets of points representing actual rheological measurements. These

measurements were performed using a Rheometrics System IV Mechanical

Spectrometer in a cone-and-plate geometry. The criterion for the

laminar/turbulent flow transition (equation 4-8) is also superimposed as

a solid, straight line in Figure 4-15. In addition, the flow field for

these dilute polymer solutions was assumed to approximate that for the

....., ., .. , • -. .. . .- -.. - , : ,. -.. , . -. .'. .'. ' '. ' =,' '.'. .' ' '. ... ." . • " ". .' .'
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FIGURE 4-14. Flow visualization streaks of
entrained air bubbles in the annular region of
the cylindrical Couette flow system.
(test fluid distilled water)
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FIGURE 4-15. Experimental flow space diagram
(simplified fluid rheology as a function of
experimental flow strength). ....
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0 105 140 170 210 255

()i(see-')

fluids

w (rpm)()

0 360 480 575 720 865

DH20 X X X X X X

DH20+500PAM X - - X -

DH2O+1000PAM X - - X -

DH20+2000PAM X - X -

DH204500PEO X - - X -

DH20+1000PEO X - - X -

DH1202000PEO X - - X -

DH2O+1000PEO* X - - X - }.?

GLY1: 1) X X X X -

G LY (1: 1) 500PAM X X X X -

GLY(2: 1) X X X X -

TABLE 4-5. Summary of experiments.



- *' ' 7 -C - --7 K

90

Newtonian solvents under identical experimental conditions.

From this graphic representation of the simplified experimental space

it was seen that the effects of polymer solutes on flow experiment

results could be examined by two related comparisons. First, the

experimental data for a polymer solution could be compared directly to

the data for its pure solvent under similar conditions. This

comparison, especially for several polymer solutions of different

concentrations, could demonstrate the competition between Newtonian

(viscous) and non-Newtonian (elastic) effects. Alternatively, the

polymer solution results could be compared to the appropriate results

for a Newtonian solvent of similar kinematic viscosity. This second L

comparison would possibly better isolate and elucidate the effects of

elasticity since any additional viscous effects of a polymer solution

would be accounted for by an increased viscosity of the reference

solvent. Also, the flow regimes for these comparisons would be more

similar. However, the shear thinning behavior of most polymer

solutions would necessitate the use of a different Newtonian solvent for

each flow strength investigated. Additionally, this experimental flow

space graph allowed fluids and flow strengths to be determined such

that the effects of the laminar/turbulent flow transition could be

investigated. This would be important for the solution/solvent

comparisons since these fluids would almost never lie in identical

regimes of the flow space.

The most important results involved the observations and

measurements of the dramatic reduction in bubble deformation amplitudes ,

caused by the addition of small amounts of water-soluble polymer to an
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4'*...

polyacrylamide

[ -CH2CH- ]
CONH, n

Polysciences, Inc.

M 5-6 x 10"
cat. no. 2806
lot no. 12762

polyethylene oxide

[-CH2CH2O-J,

Aldrich Chemical Company

M =5 x 106
cat. no. 18,947-2
lot no. 1819KH

M = I x 10"
cat. no. 18,198-6
lot no. 0923HH

TABLE 4-6. Polymer product information.

aqueous system. Two high molecular weight linear polymers,

polyacrylamide (PAM) and polyethylene oxide (PEO), were chosen for

investigation. This choice was made because of the extensive use of

these polymers in hydraulic cavitation inhibition/suppression research

(see Chapters 1 V 2). Both samples were polydisperse and of similar [
molecular weight (see Table 4-6). In addition, a polyethylene oxide

4 ..
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sample of much lower molecular weight (PEO*) was studied for

comparison.

Three dilute aqueous solutions of different concentrations (C 500,

1000 and 2000 wppm) of both higher molecular weight samples were used

in experiments. Only one solution (C = 1000 wppm) of the lower

molecular weight sample was used. A single solution of polyacrylamide

(C 500 wppm) in a glycerol/water solvent (1:1 by weight) was also

examined. All these solutions were prepared by the addition of the

appropriate amount of dry polymer powder to 18 liters of solvent. The

powder was dispersed by slow pouring into the vortex of the stirred

fluid. This dispersion was then slowly rolled in a large carboy until

the solute was completely dissolved (usually 24-72 hours). This low-

shear preparation minimized the effects of mechanical polymer

degradation.

Rheological measurements on the polymer solutions were made both

before and after experimentation. Only a small reduction in solution

viscosity was observed (TIi : 10%). Therefore, solution rheology was

characterized by average values of these measurements. The surface

tensions () of the solvents and solutions were obtained experimentally

from measurements of the maximum equilibrium force on a vertical rod

supporting a stable meniscus (Padday, Pitt & Pashley, 1975). Solvent

densities (p) were obtained from the literature (Weast, 1974; Perry ,

Chilton, 1973). A summary of solvent and solution properties is

presented in Table 4-7.

As expected, the dilute aqueous polymer solutions produced no

significant changes in the equivalent spherical bubble dynamics

," .... . . -". " . ".."- , ",.-.-... . . .' -...... ." "."" "'""" " l"-".".. . . . . . . . .II l.I I lil l l lllIM IIl ll" " '" ''" ''" ''" " " .
' '

.
' .
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solvent hsec-1) q~ (poise) p(g/CC) V(CM2/S) o(dyne/cm)

DH20 all 0.01 1.00 0.01 71.0

GLY(1:1) all 0.064 1.125 0.057 67.7

GLY(2:1) all 0.164 1.17 0.14 65.8

solution i(sec-1 ) Ti(POise) p~fc ~m/) o(dyne/cm)

DH20+500PAM 170 0.039 1.00 0.03-9 71.0

DH2O+1000PAM 0.058 0.058

DH2O+2000PAM 0.098 0.098

DH20+5OOPEO 170 0.012 1.00 0.012 61.0

DH2O+1000PEO to0.022 it0.022 I

DH20+2000PE0 0.051 0.051

DH2O41000PEO* 0.014 0.014

GLY(1:1)4500PAM 105 0.139 1.125 0.124 67.2

GLY1: 1)+500PAM 140 0.136 0.121

GLY(1:1)45OOPAM 170 0.134 0.119

TABLE 4-7. Solvent and solution properties.
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( [R/R.] versus [t/r] ). A slight increase in the normalized

experimental collapse time [r/R.] was observed, but it was less than

the experimental standard deviation for that quantity.

The anticipated effects of the polymer solutes on bubble

nonsphericity were threefold. First, the inherent increase in solution

viscosity over solvent viscosity (Table 4-7) should promote flow-induced

bubble deformation. Similarly, the decrease in solution surface tensions

(Table 4-7) resulting from the macromolecular presence (only significant

for PEO solutions) should increase deformation amplitudes. Opposing

these effects was the solution elasticity which was a direct result of the

polymer addition. As the experimental data clearly show (Figures 4-16A

and 4-16B), this elastic effect was dominant and flow induced

deformation was suppressed in the aqueous PAM and PEO solutions.

This suppression could be seen in both the maximum deformation

amplitudes and the deformation growth rates of cavities in these

solutions. For polyethylene oxide the reductions in these quantities

were 0-15% for the 500 wppm solution and 30-35% for the 1000 wppm s.'.-

solution. The polyacrylamide solutions demonstrated even more

pronounced effects with reductions for the 500 and 1000 wppm solutions

of 30-50% and 45-55% respectively. Interestingly, this trend did not

continue for either of the 2000 wppm solutions. At this concentration

the deformation reductions were only 15-25% for the PAM solution and

25-30% for the PEO solution.

The competition between viscous and elastic effects was demonstrated

by this upturn in maximum deformation amplitudes at the highest L

polymer concentration (Figure 4-17). With polyacrylamide the upturn

............... . . . **. * . . *'
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FIGURE 4-16A. Composite deformation amplitude

versus dimensionless time for bubbles in DH20

and dilute aqueous PAM solutions.
(w 575 rpm , 170 sec-1 )

symbol fluid

DH2O+500PAM

oI10100A



96

80 oO
0 T

x DA 0
< 0 D

0 02

FIGURE 4-16B. Composite deformation amplitude
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and dilute aqueous PEO solutions.
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F IGU RE 4-23. Composite deformation amplitudes
versus dimensionless time for bubbles in
quiescent GLY(1:1), GLY(1:1)+PAM and
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FIGURE 4-22C. Composite deformation amplitude
versus dimensionless time for bubbles in
GLY(1:1) and GLY(1:1)+PAM.
(w 575 r-pm ,J170 sec-1 )

symbol fluid

0 GLY(1: 1)

GLY(l: 1) +500PAM



108

120

E 80 O0 O:0:0 0

000 0

40 AA A A
x 40 o0 A .-

130 0 L &0 :

0--

1 2

It/Ti "

FIGURE 4-22B. Composite deformation amplitude
versus dimensionless time for bubbles in
GLY(1:1) and GLY(1:1)*PAM.
(w 480 rpm , 1 140 sec - 1 )
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FIGURE 4-22A. Composite deformation amplitude
versus dimensionless time for bubbles in
GLY(1:1) and GLY(1:1) PAM.
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The 500 wppm polyacrylamide/glycerol solution exhibited a greater

viscosity increase (from 0.064 to 0.134 poise) than the corresponding

aqueous solution (from 0.01 to 0.04 poise). Again, this was taken to

indicate a stronger elastic component of the fluid rheology for

GLY(1:1) 500PAM relative to DH20 500PAM. As expected, the

experimental results for all three flow strengths clearly demonstrated a

significant suppression of flow-induced bubble deformation.

The development of deformation amplitudes with time for both the

viscoelastic solution and Newtonian solvent are shown in Figures 4-22A,

4-22B and 4-22C. Maximum deformation amplitude was found to be a

linear function of flow strength in both cases. The relationships were,

[max A](10") = 0.1915(w)

= 0.653 () (4-11)

for the GLY(:I) solvent and,

[max A(1O") = 0.1145(w)

= 0.390(i) (4-12)

for the GLY(1:1)4500PAM solution. Again, the control experiments

indicated no appreciable bubble nonsphericity in either the glycerin

solvents or solution under quiescent fluid conditions (Figure 4-23).

Quantitatively, the addition of a small amount of polymer solute
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FIGURE 4-21. Maximum deformation amplitude
versus flow strength for bubbles in GLY(2:1).
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kinematic viscosity, v, of this fluid was such that for the three

experimental rotation speeds (w 360, 480 and 575 rpm) the flow

behavior went from laminar to transitional to turbulent (Figure 4-15).

Despite this change in flow stability, the behavior of the bubble

deformation amplitudes with time remained unaffected (Figure 4-20).

The maximum deformation amplitude again followed a linear relationship

with flow strength (Figure 4-21). A linear least squares fit from the

origin lead to the expression,

[max 7](104)= 0.2 0 95(w)

= 0.714(i) (4-10)

for the GLY(2:1) solution. These results strengthened the previous

conclusion (from flow visualization) that the small velocity profile

modifications due to turbulence (relative to the dominant B-component)

would have no measurable effect on the experimental results or their

interpretation.

Finally, the effect of solvent properties on viscoelastic deformation

reduction was investigated. For these experiments the polyacrylamide

solute (C 500 wppm) was again used, however, the solvent was a

glycerol/water mixture (1:1 by weight). The GLY(1:1)4500PAM solution

was chosen because it was known to be highly elastic (Chang, 1974)

and has been studied in several other contexts (Bird, Armstrong ,

Hassager, 1977). (interestingly, polyacrylamide is substantially

insoluble in nearly all organic liquids. Glycerol and ethylene glycol are

two of the few exceptions (Mark et al., 1966).)

~.--
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FIGURE 4- 19B. Composite deformation amplitude
versus dimensionless time for bubbles in
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FIGURE 4-19A. Composite deformation amplitude
versus dimensionless time for bubbles in
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solutions.
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PAM solutions exhibited much higher viscosities than the PEO solutions,

it is implied that in these dilute (0 :5 C(wppm) < 1000) aqueous L

solutions, the addition of polyacrylamide solutes resulted in greater

fluid elasticity than did polyethylene oxide.

Similarly, kinetic thoery results based on viscosity, molecular weight

and concentration data substantiated experimental results comparing

different molecular weight samples of the same polymer (Figure 4-18).

As expected, for similar concentrations (C = 1000 wppm), the higher

molecular weight PEO solution exhibited stronger deformation

suppression than the lower molecular weight PEO* solution. Reductions

in both maximum amplitude and amplitude growth rate for the more

elastic (higher X) PEO solution were twice those for the less elastic

(lower )) PEO* solution.

For each flow experiment conducted, a quiescent control experiment

was also performed in the cylindrical Couette apparatus. The results of

those tests for both polyacrylamide and polyethylene oxide solutions are

presented in Figures 4-19A and 4-19B respectively. The deformation

amplitude (versus dimensionless time) is presented on an enlarged scale

with the measurement uncertainty superimposed. As can be seen,

virtually all of the data for these quiescent trials fell within the

experimental bounds of sphericity (A 0.000 - 0.001 cm). This

further demonstrated the absence of either wall or polymer effects on

the spherical dynamics of these model bubbles in quiescent fluids.

Next, the effect of the laminar/turbulent transition on experimental

flow deformation was examined. For these tests, a Newtonian glycerin

solution (2:1 glycerol and water by weight) was prepared. The
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occurred at a concentration between 500 and 1500 wppm while for

polyethylene oxide this happened between 1000 and 2000 wppm. The

difference seems to have resulted from distinct polymer concentration

dependences of the viscous promotion and elastic suppression of flow-

induced deformations. Possible behaviors for these two polymer samples

are depicted by the solid curves. In all cases, however, the overall

elastic effect was dominant and. deformation reductions were observed.

In comparison to the polyethylene oxide solutions, these experimental

results indicated stronger elastic properties for the dilute

polyacrylamide solutions. This interpretation is supported by the

predictions polymer kinetic theory for a Hookean dumbbell model (Bird,

Armstrong, Hassager & Curtiss, 1977). In this simple model, non-

Newtonian (elastic) properties are represented by a relaxation time, I

given by,

-1 s 
(4-9A)

nkT

(4-9B)g ,C~avT

where i and n are the solution and solvent viscosities respectively, n

is the polymer number density, M is the polymer molecular weight, C is

the polymer concentration, p is the solution density, N is Avagadro's

number, k is Boltzmann's constant and T is the absolute temperature.

Since for similar concentrations of similar molecular weight samples the

...............-..... .,.,.....:.... ................ ,'.....................-.............-...... .".-..,....
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versus polymer concentration for bubbles in
dilute aqueous PAM and PEO solutions.
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• -resulted in a 40% reduction of the maximum deformation amplitude (also

of the deformation growth rate) for this GLY(1:1) solvent

(Figure 4-24). For an aqueous solution of similar concentration the

reduction of the maximum deformation amplitude was only 30%. This

result is in line with the previously discussed kinetic theory (Hookean

elastic dumbbell) interpretation of the rheological data.

The quelitative success of this explanation can be shown by a

comparison of deformation suppression in three polymer solutions

exhibiting varying degrees of elasticity. As seen in Table 4-8A, for

similar concentration, molecular weight and flow strength, the ratio of

maximum amplitude for solution to solvent (max A/max Ts) implies

greater deformation suppression with increasing elasticity (De).

Similarly for identical concentration, flow strength and solvent,

deformation amplitude reduction is seen to increase with fluid elasticity

(Table 4-8B).

However, there are serious limitations to quantitative comparisons of

deformation suppression which are based on this simplistic kinetic

theory model. For example, the model predicted no shear-thinning of

the polymer solutions. This inconsistency made comparisons of

experiments under different flow conditions essentially meaningless.

Also, the concentration dependence of the predicted relaxation times

was found to be inconsistent. For aqueous polyacrylamide solutions the

relaxation time was unrealistically predicted to decrease with increasing

concentration. This is not surprising since the kinetic theory model

assumes no interactions between polymer molecules. Because of this

assumption, it is only rigorously valid for solutions at infinite dilution.
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FIGURE 4-24. Maximum deformation amplitudes
versus flow strength for bubbles in GLY(1:1)
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solution X(sec) De(h) (max A/max A)

DH20*500PEO 0.001 0.16 81/97 0.835

DH20 500PAM 0.013 2.21 67/97 = 0.691

GLY(1:1)*500PAM 0.027 4.65 67/111 0.604

concentration C 500 wppm

molecular weight M 5-6 x 10'

flow strength W 575 rpm , 170 sec "=

TABLE 4-8A. Comparison of deformation reduction with
elasticity for similar polymer concentration, molecular weight
and flow strength.

solution X(sec) De(h) (max A/max -)

DH20+1000PEO* 0.00005 0.0025 79/97 0.814

DH20 1000PEO 0.0025 0.43 65/97 = 0.670

DH20 1000PAM 0.011 1.83 50/97 = 0.515

concentration C 1000 wppm

solvent DH20

flow strength w 575 rpm , a 170 sec "1

TABLE 4-8B. Comparison of deformation reduction with
elasticity for similar polymer concentration, solvent and flow
strength.

. . ... . . . . . . . .
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Thus, it has been concluded that direct comparisons of deformation

suppression could only be made for closely related sets of experimental

data (equivalent polymer concentration and flow strength).

These observations of the viscoelastic suppression of the flow- J1

induced bubble deformation can be related to hydraulic cavitation

phenomena through the theoretical results of Chahine and Bovis (1981).

Those researchers modelled spherical and nonspherical bubble dynamics

to obtain the liquid pressure field resulting from bubble collapse near a

solid boundary. Their predictions indicated that nonspherical bubble

collapse generates pressures at the wall which can be orders of

magnitude higher than for the spherical case. The present research

has shown bubble nonsphericity in an external flow field to be

significantly diminished by fluid viscoelasticity. Thus for hydraulic

cavitation, which combines strong external flow with the presence of a

solid boundary, the implied effect of viscoelastic polymer solutes would

be to decrease wall pressures upon bubble collapse This decrease could

possibly result in the macroscopic observations of reduced non-

Newtonian cavitation intensity, noise or even damage.

",P

...........................-,. * . -.-
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MODEL APPLICATION RESULTS

• •.

As previously discussed, an additional goal of this research program

has been to apply the most recent modelling efforts of Hara (1983) to

the present experimental situation. In this way, the independent

theoretical predictions for flow-induced dynamic bubble deformation in

both viscous and viscoelastic fluids could be compared to these

significant experimental results. The initial model application by Hara

dealt mainly with nonspherically initiated cavities in both quiescent

distilled water and dilute polyacrylamide solutions (C a 500 wppm).

Good agreement between model predictions and experimental results were

reported (see Chapter 2). The effects of fluid viscoelasticity in this

situation were found to be small, though non-negligible.

As a starting point for the present work, the dynamics of

nonspherically initiated bubbles in a quiescent viscous glycerol/water

mixture (Ti 1.05 poise) have been examined (see Figure 4-5). The

reduced experimental data describing this cavity have been presented in

Table 4-3B. This experiment differed from those of Hara because the

high-speed photographic system used to record the data resulted in less

experimental uncertainty for both bubble radius ( - 1-2% versus 0 2-4 ° )

and deformation amplitude ( ± 5-10% versus ± 10-20%).

Again following Hara's modelling procedure, a smooth fit of the

experimental radius profile, R (t), was made using a Fourier sinefit

~~°~.
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series approximation of the form,

5
Rfit(t) = C sin[(2i-1)v(t/At)] (5-1A)

i=1

where Ci is the amplitude of the ith wave given by,

At2f (((2i-1),t)'
C. IR(t) sin dt (5-1B)

At Jfat
0

and At is the total bubble lifetime. For a composite sequence of several

bubbles, the total bubble lifetime (At) is replaced with twice the

experimental collapse period (2r) in equations 5-1A and 5-lB. This

composite quantity is determined from the relationship,

= 2 (U/R) R (5-2)

where (U/Rg) is the normalized experimental collapse time (equation 4-2)

and R. is the composite maximum bubble radius for the experiments of

interest. The value of each coefficient (C.) was determined by a

numerical integration of the experimental data for the equivalent

spherical bubble radius. From the series representation of the bubble

radius, values of R were interpolated at points within the experimental

domain (0 < t <- At). The functions R(t) and R(t) were generated from

term-by-term integration(s) of the series. A sample calculation of this

procedure is presented in Appendix B.

~• -1
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Using these functions, as well as the external flow field boundary

condition, Hara's model predicted the amplitude of bubble nonsphericity

(A) and the derivative of this amplitude with respect to time (dA/dt).

For this quiescent case (no external flow), model initiation included the

specification of both an initial deformation amplitude, as and an initial

amplitude velocity, is. The values for these and other pertinent model

and experimental parameters are given in Table 5-1. The possible

ranges of values for the two initiation parameters,

0.10 :5 as (cm) : 0.15

-1500 i .= (cm/sec) < *500

were constrained by the uncertainty in extrapolating the experimental

data back to time zero. The values which were chosen (Table 5-1)

produced the numerical result which best followed the experimental data

(Figure 5-1). Although variations in these initiol conditions produced

significant quantitative differences in the theoretical results (amplitude

versus time), the qualitative behavior of the deformation amplitude with

time remained unchanged.

As expected, this behavior was qualitatively similar to that observed

and reported by Hara for cavities in both water and dilute polymer

solutions (see Figures 2-6A and 2-6B). These similarities for solutions

of such different rheological properties indicated the degree to which

inertial effects dominate the cavitation phenomenon. However,

quantitative differences arising from the viscous effects of the glycerol

0o 1o
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spherical parameters

maximum radius Re 0.313 cm

bubble lifetime :At 680 Usec

Fourier coefficients C1 = 0.354 cm

C2 = 0.057 cm

C3 = 0.022 cm

C, = 0.012 cm

Cs "0.006 cm

nonspherical parameters

initial amplitude: a. =0.130 cm
init. amp. velocity : = *500 cm/sec

7

fluid properties

density : p 1.22 9/cm.

viscosity : 1.05 poise

surface tension : a 64 dyne/cm

TABLE 5-1. Numerical and experimental parameters for
a nonspherically initiated bubble in glycerol/water.
(see Figure 4-5)

***P* ~.. *
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solution can be seen. In its relation to bubble oscillation, both

spherical and nonspherical, the effect of viscosity has been interpreted

as a damping mechanism (Lauterborn, 1976; Inge , Bark, 1982;

Hara, 1983). In the context of Figure 5-1 compared to Figures 2-6A

and 2-6B, the increased damping can be seen as (a) a steeper drop in

deformation amplitude with time and (b) a less pronounced inflection in

deformation amplitude near maximum bubble size ([t/] =1). These

changes further demonstrate the increased sensitivity of the behavior of

these nonspherical cavitation bubbles to fluid rheology over the simpler

spherical bubble dynamics, even with no imposed flow. However, as

Hara reported, an exterral flow field, acting as the sole source of

system nonsphericities, strongly influenced bubble dynamics through

fluid rheology. It is this most important aspect of Hara's model which

has been applied to the aforementioned experimental results (see

Chapter 4).

According to Hara (1983), the model could be used to generate a

realistic fluid history by postulating a continuous external flow over all

past times (-- < t < 0) which continued throughout the bubble lifetime

(0 : t < At). This flow took the form of a sinusoidally oscillating

uniaxial extensional field described by,

v - A*(t) e i g V[r2Y2(8,)] (5-3)

as r -

where A*(t) is the complex model flow amplitude function and Q is the

flow oscillation frequency. In addition, the model flow strength

-. ~~~~ .. . ... .. . . . . . . . . . . . . . . .
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decayed exponentially from time zero for both positive and negative

times according to,

A*(t) = A* exp(+t/c) (5-4A) C. K.

for -- < t S 0

and

A*(t) = A* exp(-t/tdecay) (5-4B)

for 0 t <-

where A* is the complex flow amplitude constant and C and t are

the decay constants for negative and positive times respectively. The

adaptation of this flexible model to the experimental flow conditions

required the specification of most of the adjustable model parameters.

The appropriate physical situation was a two-dimensional shear field of

constant magnitude which resulted in bubble elongation along the axis

of shear. The simulation of steady flow required that the flow decay

constants (4 and tdecay) had values of negative and positive infinity

respectively. In addition, the flow frequency (9) had to be specified

as positive and infinitesimally small. For the purpose of numerical

................................. ;p
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computation the values of these parameters were approximated as

follows,

(1/) 10" sec "I

(1/tdecay) 10 sec'-

deecS2= 10-11 sec"."-

Finally the flow oscillation phase, given by the real and imaginary

components of the complex flow amplitude constant (A*), was required

to be zero. Thus, the flow amplitude constant had to be real. With

these constraints, a steady flow could be specified by a single model

parameter, Re(A*), the real flow amplitude.

Given the inherent geometric differences between the model flow field -

and the experimental flow system, this model flow parameter was

assumed to be freely adjustable. As substantiated by experimental

results, the predicted magnitude of the theoretical bubble deformation

[Am] was determined by numerical trials to be a linear function of the

model flow strength parameter (Figure 5-3 and Table 5-2). However,

in contrast to the experimental results, predictions of deformation
S.-

amplitudes were found to depend on maximum bubble size. The steady- -.

state deformation relationship (equation 3-3) suggested a quadratic

dependence of deformation amplitude on bubble radius (A = R2 ). It is

possible that such behavior did occur experimentally, but that it was

unobservable beause of (a) the small amount of bubble nonsphericity

and/or (b) the large amount of scatter in the raw data. Thus to

5. * 4. .. .. .. * . .. S
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facilitate comparisons of theoretically and experimentally generated

bubble deformation profiles, a normalization of the model predictions

(based on this suggested quadratic relationship) was made through

variation of the model flow strength parameter with bubble size

(equations 5-5 and 5-7).

To determine the anticipated linear relationship between theoretical

and experimental flow strengths (Re(A*) and w or b), best fit curves

for the DH20 flow deformation results (see Figure 4-12) were obtained

by varying Re(A*) to match the theoretical maximum deformation

amplitudes [max Am] to the experimental values [max ]. Figure 5-2

shows one such best fit of the experimental flow deformation data for --

DH20 at a rotation rate of 575 rpm. These model parameters were then

normalized with respect to the mean experimental maximum bubble radius

(Rm 0.45 cm). The normalized flow strengths, ReN(A*) are given

by,

ReN(A*) - Re(A*) [R 0 /Rm12 (5-5)m

where Re(A*) is the best fit model flow amplitude for each experimental

DH20 flow composite. These normalized model flow parameters, when

plotted against corresponding experimental flow strengths, depicted a

linear relationship between model and experimental flow conditions

(Figure 5-3). Linear least squares fits of ReN(A*) versus w and -

...~~ ." .. °. .
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CONCLUSIONS AND RECOMMENDATIONS

In light of these experimental results and model application efforts, the

conclusions of this research fall into two distinct (but related) areas.

These are (a) Newtonian (or viscous) flow-induced cavitation bubble

deformation and (b) non-Newtonian (or viscoelastic) suppression of

flow-induced cavitation bubble deformation. In addition, the non-

Newtonian observations have been extended, in conjunction with the

results of other researchers to further explain the macroscopic effects

of hydraulic cavitation inhibition in polymer solutions (see Chapter 4).

In the first category, experimental results demonstrated a linear

relationship between bubble nonsphericity and imposed flow field

strength. As a consequence of the transient nature of the

phenomenon, observed deformations were quite small, particularly with

respect to steady-state deformation predictions (0.01-0.015 cm versus

0.03-0.30 cm). Despite the small amplitudes and the extremely short

time scale involved, bubble deformation dynamics displayed smooth

behavior (within experimental measurement uncertainty). Model

predictions of bubble nonsphericity based on an imposed uniaxial

extensional flow field were in good qualitative agreement with the

experimental results. The model flow amplitude (A*) was used as an

adjustable parameter in developing a linear correlation between
L

experimental and theoretical flow strengths from DH20 data and

predictions. Based on this correlation, theoretical and experimental

deformation results were in quantitative agreement to within - 10-15%

for all Newtonian fluids.

- .. " ,.
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flow-induced deformation amplitudes displayed by these three sets of

model predictions, paralleled a similar experimental relationship

demonstrated by the data (see Tables 4-8A and 4-8B). As the fluid

relaxation time increased, both experimental results (for solutions of

similar concentration under equivalent flow conditions) and theoretical

predictions (for relaxation time ranges and sets of similar solutions)

exhibited stronger viscoelastic bubble deformation inhibition. However,

limitations similar to those noted for the simplistic Hookean dumbbell

model (see Chapter 4) were observed for these Maxwell element model

predictions. In particular, this linear viscoelastic theory failed to

predict the upturn in maximum deformation amplitude with increasing

polymer concentration (see Figure 4-17). In this example, where

increasing elasticity led to progressively decreasing nonsphericity, and

in model predictions of bubble deformation in Newtonian solvents

(Tables 5-2, 5-3A and 5-3B), viscous effects seem to have been

underestimated. In this light, experiment and theory can only be

interpreted as qualitatively consistent with each other.
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adjusted relaxation times were within the range,

1.75 X , x 106 (sec) 2.25 (DH20 PAM).

For aqueous polyethylene oxide solutions including PEO* (four), the

range of relaxation times was,

1.65 1 . x 106 (sec) S 2.00 (DH20+PEO,PEO*).

Finally, for polyacrylamide in glycerol, GLY(1: 1) *500PAM, the

appropriate relaxation times (three) were determined to be within,

2.00 S X x 10' (sec) < 2.10 (GLY PAM).

Typical model/experiment comparisons for Newtonian predictions, non-

Newtonian fits and experimental data are presented in Figures

5-5A, -5B and 5-5C. The figures show representative experimental

and theoretical results of viscoelastic cavitation bubble deformation

suppression for each of the three polymer solution groups investigated.

Qualitatively, the viscoelastic model predictions displayed a temporal

shift in the maximum deformation amplitude from a dimensionless time

[t/ki] of about 1.4 to about 1.1, just past maximum bubble size.

However, this shift was not observed experimentally. In a quantitative

sense, the relationship between fluid elasticity and the reduction in

.... - ... ..... °... ..... •. .. ... .-.... .... .- ,..,.-...=.
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was experimentally observed) for a steady flow situation (rflow

Modelling efforts, paralleling the experimental results for flow-

induced bubble deformations in polymer solutions, required the

specification of two additional fluid parameters. These were the elastic

modulus (GI) and the fluid relaxation time (X). Reported values for

polymer solution relaxation time, based on both theory and experiment,

ranged from 10-1 to 10- sec. Therefore, the model relaxation time was

assumed to be a freely adjustable parameter within these bounds for

realistic values. In contrast, realistic values for the Maxwell element

elastic modulus were not readily available. However, since Hara had

investigated the effect of this parameter within the range of 10- ' to 102

poise/sec, an intermediate value of unity was selected for all

viscoelastic modelling efforts (G. = 1.00 poise/sec).

For a relaxation time value of zero, the model deformation predictions

were qualitatively Newtonian (following the results for purely viscous

solvents). Increased liquid viscosity and decreased surface tension

resulted in slightly increased bubble deformation amplitudes. As

anticipated, for small positive values of the fluid relaxation time

X 10- - 10-6 sec), predicted nonspherical bubble amplitudes were

significantly reduced. This qualitative agreement between theory and

experiment was the most significant result of these model application

efforts.

Quantitatively, viscoelastic deformation amplitude predictions were fit

to the experimental results for the r lymer solutions by adjusting the

value of the relaxation time to match the predicted [max A ] with them

measu red [max J. For aqueous polymer solutions (three), these
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fluid GLY(2:1)

physical properties

density p =1. 17 9/cm'

viscosity: TI 0. 164 poise

surface tension : a 66 dyne/cm

experiment/model comparison

w(rpm) i(sec') R. (cm) ReN (A*) Re (A*) [max A7/max Am)

360 105 0.480 19.3 17.0 *.0077/*.0065

480 140 0.460 25.7 24.6 +.0100/+.0087

575 170 0.453 30.8 30.4 +.0120/+.0103

experimental uncertainty

[max A]=X t 0.0010 cm

TABLE 5-3B. Experimental/theoretical comparisons for GLY(2:1).
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and 5-3B respectively. Although the predicted maximum deformation

amplitudes fell within or nearly within the bounds of experimental

uncertainty, the agreement between model predictions and experimental

data worsened with increasing fluid viscosity. This progressive

disparity was clearly displayed by comparisons of theoretical and

experimental results for these three Newtonian solvents at a rotation

rate of 575 rpm. Model prediction error (E) for that flow strength,

defined as,

[max ] - [max Am]
E -(5-8)

[max A]

increased from (-3%) to (-10%6) to (-14%) as the viscosity increased from

1 cp to 6.4 cp to 16.4 cp for DH20, GLY(1:1) and GLY(2:1)

respectively. Despite these quantitative differences, the qualitative

agreement was quite good. ,

Previous modelling efforts involving an oscillating external flow

combined with flow decay and bubble collapse in a viscoelastic fluid

(Hara, 1983) gave rise to somewhat ambiguous results. Depending on

the flow frequency (described nondimensionally as rflow) , fluid

elasticity was found to result in either increased or decreased bubble

nonsphericity. For the higher frequency case (smaller tflow, elastic L

effects caused increased bubble deformation upon collapse while for the

lower frequency case (larger rflow.) decreased bubble deformation was

ultimately observed. An extrapolation of these results led to the

qualitatively correct prediction of viscoelastic deformation reduction (as

.;.:;.:.-.:;...-.)-'..v ....'.). ......-.... ...-. - ." .... . ..--..... .-. "'--. -: -:..-. . ... :--....
. , . / ._,:,..' ", ,: _. ., ,, ,=,_- ,'~. . . ......:': , .,• . . . . ,,.,-,.,. .. ,.,...... . ..... ,
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fluid GLY(1: 1)

physical properties

density p =1. 125 g/cm'

Viscosity 11 0.064 poise

surface tension a =68 dyne/cm

experiment/model comparison

W(rpm) i(sec-') R. (cm) ReN(A*) Re (A*) [max A/max Am

360 105 0.485 19.3 16.6 +.0070/+.0064

480 140 0.490 25.7 21.7 *.0090/+.0084

575 170 0.490 30.8 26.0 +.0111/*.0100

experimental uncertainty

[max A] =X i 0.0010 cm

TABLE 5-3A. Experimental/theoretical comparisons for C LY(1 :1).
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fluid DH20

physical properties

density p=1.00 9/cm2

viscosity ii=0.01 poiseL

surface tension a 71 dyne/cm

experiment/model comparison L

w(rpm) ihsec-l) R (cm) ReN (A*) Re (A*) [max A/max Am
-M

360 105 0.463 19.1 18.0 +.0057/+.0059

480 140 0.458 25.5 24.6 *.0072/+.0079

575 170 0.474 30.6 27.6 *.0O97/+.0O94

720 210 0.446 38.2 38.9 4.0118/+.0114

865 255 0.427 45.8 50.9 +.0136/+.0139

experimental uncertainty

[max A]=X t 0.0010 cm

TABLE 5-2. Experimental/theoretical comparisons for DH2O.
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(from the origin) resulted in the following equations,

ReN(A*) 0.0531()

- . 180 ) . (5-6)

Appropriate model flow parameters, Re(A*), could thus be specified
i7

a priori for any of the experimental conditions (flow strengths and

bubble sizes). First, the normalized model flow amplitude was

determined from the particular experimental flow strength via either one

of the above relationships. Then, this value was renormolized

(corrected for the experimental bubble size) by the inverse

relationship,

Re(A*) ReN(A*) [R /R0]
2  (5-7)

m

L

to determine the model flow strength parameter for the experimental

situation of interest (see Appendix B). Model predictions based on this

approach were made for parameters corresponding to each of the five

experimental DH20 flow composites. Comparisons of theory to

experiment for two cases (w a 480 and 720 rpm) are shown in

Figure 5-4 and a summary of all five comparisons is presented in

Table 5-2.

Similar theory/experiment comparisons for the two other Newtonian

solvents, GLY(1:1) and GLY(2:1), are presented in Tables 5-3A

%L.
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In both experiment and theory, substantial increases in fluid

viscosity (up to 16x) resulted in only relatively small increases in
h L

bubble deformation (up to 25%). This observation was in sharp

contrast to the linear relationship predicted by steady-state bubble

deformation modelling. The results further demonstrated the dominance

of inertial effects over viscous effects in nonspherical as well as

spherical cavitation bubble dynamics. However, the agreement between

experiment and theory progressively worsened (from within t 10% to

- 15%) as fluid viscosity increased.

Experimentally, the effects of fluid viscosity were dwarfed by the

dramatic bubble deformation suppression observed in viscoelastic

polymer solutions. Nonspherical bubble dynamics were clearly shown to

be influenced by the external flow through fluid rheology as

qualitatively predicted by the application of Hara's model.

Quantitatively, both experiment and theory demonstrated greater

deformation -Juction with increased fluid elasticity (see Tables 4-8A

and 4-8B). These conclusions regarding the viscoelastic suppression of

flow-induced deformation in model cavitation bubbles have been

qualitatively related to hydraulic cavitation observations of a similar

nature (see page 114). This connection was made by relating the

decrease in deformation amplitude (increase in bubble nonsphericity)

observed in polymer solutions to a predicted reduction in pressure-field

amplitude upon bubble collapse resulting from this increase in sphericity

(Chahine , Bovis, 1981).

The present research did, however, turn up some discrepancies

between the physical observations and theoretical predictions. The
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experimental results displayed a competition between viscous deformation

promotion and elastic deformation suppression, the correct magnitude of

which was not predicted theoretically. This competition was

demonstrated experimentally by the upturn in the maximum amplitude

data at higher polymer concentrations. Conversely, model results

predicted a temporal shift in the position of the maximum deformation

amplitude, relative to that for Newtonian solvents (for a value of (t/t)

from 1.4 to 1.1), which was not observed experimentally. These

differences, while minor relative to the overall agreement of theory and

experiment, have suggested both interesting extensions of the present

work and important new directions for future fundamental research.

As is common in fundamental investigations, the results of the

present study have raised as many questions as they have answered.

Several immediate extensions of this research would serve to further

elucidate the dynamic phenomenon of flow-induced cavitation bubble

deformation. One interesting prospect would be flow experiments

designed to produce significantly larger deformation amplitudes than

achieved by this study, possibly approaching the values for steady-

state flow deformation. This would necessitate substantial flow system

modification in order to sustain the higher shear rates (200 to

500 sec - 1 ) with the higher solvent viscosities (2 to 5 poise) required

for large bubble deformations.

The effect of bubble size on dynamic flow deformation is another

question which has been brought to attention. Even though the

present study has sought to simplify the analyses by examining bubbles

within a fairly narrow size range, the model predictions demonstrated -

--. . _ -.
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greater self -consistency when input parameters were normalized to

account for bubble size variations. The present experimental system is
L .

capable of producing and recording bubble dynamics for sizes from 0.1

to 1.0 centimeters in radius.

The effects of fluid physical properties, particularly viscosity and

surface tension, on flow-induced bubble nonsphericity is a third area

where immediate investigations can be made. The experimental data

from this research clearly demonstrated that dynamic viscous effects did

not follow the linear behavior predicted by steady-state deformation

modelling. In fact, even the predictions of Hara's dynamic model began

to differ significantly from experimental results for fluids of only

moderate viscosity (Ti > 0.1 poise).

Fluid viscoelasticity and its effect of suppression of flow-induced

bubble nonsphericity is an area where more quantitative work can be

done. Specifically, a detailed examination of deformation suppression as

a function of polymer concentration in the dilute regime

(0 <- C(wppm) < 1000 with AC = 100 wppm) would be quite informative.

The additional effects (if any) of polymer solutes at high concentrations

(C = 1-10 wt.%) might prove interesting. Another area of interest,

both experimentally and theoretically, is in the examination of polymer

solute effects on jet formation from bubble collapse near a solid wall.

An attempt to model this highly nonspherical phenomenon in a quiescent

viscoelastic fluid and an effort to conduct related pilot experiments, are

currently underway at Princeton University.

However, it is the combination of an imposed flow field with bubble

collapse near a solid boundary (as occurs in hydraulic cavitation) which

"." ' "-"." "-" ." "-"-" - ' ,-.'''"" -"" --""°'-''' ." '- :: ''- "-",.. " "" " -- , -'" ' -:-''' ,.'°L."'" ° , " ,'"."'5
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could lead to the most important fundamental advances. The present

study has sought to eliminate the solid boundary effects and focus on

flow-induced bubble nonsphericity alone. This was easily accomplished

by employing a sufficiently large annular test region for bubble

dynamics experiments. Straightforward modifications of the flow system

should easily permit bubble production sufficiently close to the inner

cylinder (solid boundary) for the observation of wall effects (jet

formation) both with and without the external shearing flow. Thus, the

effects of fluid viscoelasticity on (a) flow-induced bubble deformation

(present research), (b) bubble collapse near a solid boundary

(research in progress) and c) on combinations of these two situations

(future research) can be systematically investigated. In this way,

experimental advances and related theoretical predictions can attempt to

model more accurately the hydraulic phenomenon which has served to

motivate this and other research.

.'1.7
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t(u~sec) R (cm) A (cm)

0 0.000 0.00

50 0.200 +.0002

100 0.318 +.0008

150 0.364 +.0016

200 0.395 +.0024

250 0.430 +.0034

300 0.451 +.0044

350 0.458 +.0053

400 0.468 +.0063

450 0.476 +.0073

500 0.471 +.0081

550 0.460 +.0087

600 0.453 +.0092

650 0.436 *.0094

700 0.403 *.0082

750 0.370 *.0035

800 0.332 -.0102

850 0.233

900 0.047

TABLE B-3. Sample model bubble predictions.
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renormalized model flow amplitude from equation 5-7 was given by,

Re(A*) = 30.6 (0.45/R)1 2

= 27.6

For predicting bubble dynamics in DH20 and other Newtonian fluids,

this model flow amplitude as well as the experimental and theoretical

parameters from Table B-1 served as a typical data set for Hara's

numerical model (see Chapter 5). The modelling involved the

simultaneous numerical solution of three differential and/or integro-

differential equations (111.27, 111.32 and 111.34) subject to the specified

radial bubble profile Rfit (t) and the appropriate ambient flow conditions

(111.29 and 111.30) (Hara, 1983). Sample model predictions (dimensional

bubble radius and deformation amplitude versus dimensional time) for

conditions corresponding to those for the sample experimental data

(Table B-2) are presented in Table B-3.

For modelling bubble dynamics in a non-Newtonian fluid only two

additional parameters needed to be specified (see Table B-i). The

appropriate integro-differential equations for the inclusion of fluid

viscoelasticity were 111.41, 111.44, 111.45 and 111.46 (Hara, 1983). In

addition, the radial profile and ambient flow conditions were the same as

in the Newtonian fluid case. Finally, the format for the input of the

data into the numerical scheme is documented in the program listing

(available from the author).

'7:L:
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(t/r)(R/Ro) AZ(cm)

0.00 0.00

0.10 0.412 0.00

0.20 0.625 *.0005

0.30 0.745 +.0014

0.40 0.827 *.0033

0.50 0.888 +.0047

0.60 0.933 +.0048

0.70 0.966 *.0055

0.80 0.984 *.0062

0.90 0.998 +.0066

1.00 0.998 +.0071

1.10 0.986 +.0083

1.20 0.970 +.0088

1.30 0.944 +-0092

1.40 0.906 +.0097

1.50 0.860 +.0090

1.60 0.799 +.0074

1.70 0.720 *.0064

1.80 0.610 *.0043

1.90 0.404 +.0023

2.00 -0.009 +.0001

TABLE B-2. Sample bubble composite data.
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resulted in nearly identical values for the series coefficients. These

were,

C = 0.5412 cm

C2 = 0.0951 cm

C3 = 0.0397 cm

C. = 0.0201 cm

Cs = 0.0107 cm

for the coefficients of the included odd (2i-1) series terms. The

coefficients for all even series terms (not included) were at least a

factor of ten smaller than the smallest coefficient of the included series

terms.

With this series representation of the spherical bubble data and the

known physical properties of the fluid, for steady flow modelling (see

Chapter 5) only the flow strength parameter, Re(A*), needed to be

specified. From equation 5-6, the normalized model flow amplitude was

determined to be,

ReN(A*) = 0.18 "

= 30.6

This value was then modified to account for the variation in bubble

radius from the overall experimental mean (Rm 0.45 cm). The
.-m+
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physical properties: .

fluid density: p =1.00 gm/cm'

fluid viscosity: 1 0.01 poise

surface tension :a =71.0 dyne/cm

rotation rate w 575 rpm

shear rate: =170 sec-1

spherical parameters

comp. max. radius R,= 0. 474 cm

norm, bubble lifetime (2r/110) = 1921 Usec

avgq. bubble lifetime 2T 911 Usec

numerical parameters:

flow decay constants (1/0) 10"D sec-

(1 /t decay) = 10-"0 sec-1

flow osc. frequency S2= 10-1 sec-I

non-Newtonian parameters

relaxation time 10-' :5 Xsec) s 01

elastic modulus G. = 1 .00 poise

TABLE B-1. Physical properties, spherical
parameters and numerical parameters.
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APPENDIX B

Sample Calculations.

The application of Hara's theoretical model to these experimental results

followed a straightforward procedure. An example of this procedure is

presented below for a deformation amplitude composite of a bubble in

distilled water (DH20) at a flow system rotation rate of 575 rpm

(shear rate: 1 170 sec-1 ). The composite spherical parameters,

appropriate physical properties and numerical model parameters are

presented in Table B-1. The composites of dimensionless radius and

deformation amplitude versus dimensionless time are presented in

Table B-2.

Next, the radial profile composite was represented by a Fourier sign

series approximation (equation 5-1A). The coefficients (C.) were

determined by a numerical integration of equation 5-1B in which the

experimental radial data are given by,

R(t) R(t/x) (B-1)

- (R/R0) To

where (R/R0) is the average dimensionless radius and R0 is the r.

composite maximum bubble radius. A numerical time step in the range

of 0.5 to 1.0 us was used for the integration. The use of either the

trapezoidal rule or Simpson's rule to interpolate between the data points

". " .,', ". . " ".",/ ". ". . " ".." .. -" ° :. '-.".- .." .'.-'-.". '.,..".'. ./.." " -;'-,',. :, .2 2. :.. 2.2.". 7.7" 701"
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contents (assuming saturation conditions), and (c) comparing the latent

heat of vaporization for the contents to the experimentally measured

bubble energy. More detailed modelling, possibly including shock wave

energy loss and non-ideal vapor expansion, should lead to even better

quantitative agreement.

' "
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Eca UJ) Eb(Q) R (cm) V (cm')ctbmax max

0.08 0.004 0.13 0.01
0.08 .0160.20 0.0

0.08 0.01 0.205 0.04

0.08 0.027 0.245 0.05

0.08 0.027 0.2405 0.06

0.29 0.12 0.465 0.28

0.29 0.126 0.4 0.41

0.49 0.265 0.54 0.66

0.49 0.31 0.55 0.67

0.82 0.42 0.585 0.84

0.70 0.44 0.585 0.82

1.00 0.62 0.64 1.10

0.94 0.63 0.62 1.00

0.94 0.64 0.62 1.00

1.00 0.66 0.635 1.07

1.11 0.78 0.655 1.18

TABLE A-2. Bubble nucleation energy data versus
maximum bubble size for bubbles in DH-2O.
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this reflection was the sole source of energy loss since no appreciable

liquid (DH20) absorption occurred. The loss from each lens (both

surfaces) was determined to be 5 ± 1% of the total incident energy.

With this result, the bubble nucleation energy (Eb) was easily

determined from the laser output energy (Eca I) (for the appropriate

capacitor voltage) and the transmitted energy (Enet ) measured by the

laser calorimeter. With nucleation,

Eb Ecal-L) - Eet/(1-L) (A-3)

where L is the lens reflective loss determined above.

High-speed photography was again used to record the dynamics of

these essentially spherical bubbles in distilled water. Bubble sizes

were measured from the microfilm prints as described in Chapter 4.

The data for bubble energy and maximum bubble size (radius R and/or

volume V) are presented in Table A-2 and Figure A-3. These data and

this experimental technique should be useful in research aimed at (a)

bubble/shock energy balances and measurements (Hentschel

Lauterborn, 1982) or (b) internal vapor/gas pressure and temperature

modelling (Fujikawa & Akamatsu, 1980). A crude modelling effort based

on adiabatic bubble growth from a high-pressure nucleus (RNNP .,.-

theory) was found to be in agreement with these preliminary energy

measurements to within 2 20-40%. This modelling involved (a) choosing

the nucleus vapor pressure and the vapor expansion coefficient which

would result in the desired maximum bubble size, (b) using the vapor

pressure at maximum bubble size to determine the mass of the bubble
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V M max) E (J)

78.0 0.29 ± 0.01

80.0 0.49 ± 0.01

82.0 0.70 ± 0.01

84.0 0.82 ± 0.02

86.0 0.94 ± 0.02

88.0 1.00 ± 0.02

90.0 1.11 ± 0.02

TABLE A-1. Laser output energy calibration results.

measurements of the unobstructed laser output as a function of

capacitor bank voltage (Vc) over the range of interest (Table A-1).cap
The second required the determination of the reflective energy losses

from the focussing and collimating lenses. This was accomplished by

measuring the laser pulse energy with the test cell in place (Enet ) at a

sufficiently low charge voltage to preclude cavity nucleation. This

transmitted energy was then referenced to the energy of the

unobstructed laser pulse (Ecal) to reveal the percentage energy loss

(L) due to reflection from the two lenses. Without nucleation,

Enet Ecal (1-L)2  (A-l)

L 1 (Et/E (A-2)

ne Cal 

%.
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I SYSTEM TRIGGER 9 FLASH POWER SUPPLY

2 DELAY GENERATOR 10 FLASHLAMP HEAD

3 LASER POWER SUPPLY 11 FRESNEL LENS AND/ORl

4 RUBY LASER FLASH DIFFUSER

5 HeNe LASER 12 ENERGY TEST CUVETTE

6 HN. POWER SUPPLY 13 HIGH-SPEED CAMERA

7 COOLING SYSTEM 14 LASER CALORIMETER

S LASER FILTER 15 CALORIMETER POWER SUPPLY

FIGURE A-2. Schematic diagram of the
equipment configuration for energy tests.
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FIGURE A-1. Equipment conf iguration for
bubble energy measurement experiments.
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APPENDIX A

Bubble Energy Measurements.

In addition to the numerous experiments performed on the flow-induced

deformation of model cavitation bubbles, a new technique for bubble

energy measurements was briefly explored. With the technique of

laser-induced bubble production there was considerable uncertainty in

any a priori estimation of the energy involved in actual cavity

formation. While the laser pulse energy was quite reproducible from

shot-to-shot (+-59o), the fraction of energy absorbed in the bubble

nucleation process was not. Microscopic impurities, such as dust, in

the vicinity of the laser focal point resulted in relatively large

variations in bubble size,

A(radius) : 10 - 20%

A(volume) : 30 - 60% r6

for similar laser pulse energies (identical laser capacitor bank charge

voltages).

The technique which was developed involved the use of a laser

calorimeter for energy measurements (see Table 3-7) and a quiescent

energy test cell for focussing and collimating the laser pulse (see .

Figure 3-5). The experimental configuration for these tests is shown

photographically in Figure A-1 and schematically in Figure A-2.

Initially, two system calibrations were performed. The first involved
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